• Title/Summary/Keyword: TCO-less

Search Result 32, Processing Time 0.028 seconds

Synthesis of TCO-less Solar Cell using Metal Mesh Type Electrode and its Photovoltaic Characteristics (금속 메쉬 전극을 이용한 TCO-less 광전변환소자 제작 및 광전변환 특성)

  • Park, Min-Woo;Sung, Youl-Moon
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.25 no.2
    • /
    • pp.126-130
    • /
    • 2011
  • Transparent conductive oxide (TCO) is an important part in the construction of dye-sensitized solar cells (DSCs) because of its low sheet resistance, sufficient light transparent ability and high photoelectrical response as a porous photo-electrode material of DSCs. However, the use of TCO for the two DSC electrodes can result in significant cost increase for the less effective DSCs compared to Si based solar cell. Therefore, the replacement of TCO is required for the commercial production of DSCs. In this study, TCO electrodes are replaced by stainless steel mesh. The 3.44[%] efficiency of the prepared TCO-less DSCs sample was obtained.

A Formation of Hole Pattern on Ti Electrode by Lift-off and Its Application to TCO-less Dye-sensitized Solar Cells (Ti 전극의 Lift-off 공정을 이용한 홀 패턴 형성과 TCO-less 염료감응형 태양전지의 응용)

  • Jung, Haeng-Yun;Ki, Hyun-Chul;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.28 no.3
    • /
    • pp.175-179
    • /
    • 2015
  • In this study, we propose Ti hole pattern structure on the transparent conductive oxide (TCO) less dye-sensitized solar cells (DSSCs) using the lift-off process to improve the low light transmittance and low efficiency caused by opaque Ti electrode. The formation of Ti hole patterns make it possible to move the dye adsorption and electrolyte. The DSSCs with Ti hole patterns showed a higher photoelectric conversion efficiency (PCE) than those with general structure by 11.1%. As a result, The Ti hole pattern structure can be improved to increase the light absorption of the dyes and PCE of the TCO-less DSSCs is also increased.

Fabrication of Transparent Conductive Oxide-less Dye-Sensitized Solar Cells Consisting of Titanium Double Layer Electrodes (이중층 티타늄 전극으로 구성된 TCO-less 염료감응형 태양전지 제작에 관한 연구)

  • Shim, Choung-Hwan;Kim, Yun-Gi;Kim, Dong-Hyun;Lee, Hae-June;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.60 no.1
    • /
    • pp.114-118
    • /
    • 2011
  • Dye-Sensitized Solar Cells(DSSCs) consist of a titanium dioxide($TiO_2$) nano film of the photo electrode, dye molecules on the surface of the $TiO_2$ film, an electrolyte layer and a counter electrode. But two transparent conductive oxide(TCO) substrates are estimated to be about 60[%] of the total cost of the DSSCs. Currently novel TCO-less structures have been investigated in order to reduce the cost. In this study, we suggested a TCO-less DSSCs which has titanium double layer electrodes. Titanium double layer electrodes are formed by electron-beam evaporation method. Analytical instruments such as electrochemical impedance spectroscopy, scanning electron microscope were used to evaluate the TCO-less DSSCs. As a result, the proposed structure decreases energy conversion efficiency and short-circuit current density compared with the conventional DSSCs structure with FTO glass, while internal series impedance of TCO-less DSSCs using titanium double layer electrodes decreases by 27[%]. Consequently, the fill factor is improved by 28[%] more than that of the conventional structure.

Fabrication of TCO-less Dye-sensitized Solar Cells by Using Low Cost Ti Layer Deposited Glass Substrate (저가의 Ti 박막이 증착된 유리 기판을 사용한 TCO-less 염료감응형 태양전지의 응용)

  • Jung, Haeng-Yun;Ki, Hyun-Chul;Gu, Hal-Bon
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.27 no.11
    • /
    • pp.725-729
    • /
    • 2014
  • In this study, a transparent conductive oxide (TCO)-less dye-sensitized solar cells (DSSCs) was fabricated by using titanium (Ti) electrode to replace the Fluorine-doped tin oxide (FTO) for the reduction of manufacturing cost. Ti film was formed by electron beam evaporation method and the results showed the sheet resistance of Ti electrodes with a thikness of 500 nm similar to FTO. In case of power conversion efficiency (PCE), a DSSC with Ti electrodes showed a lower value than that with FTO by 0.38%. For the investigation of the difference, the DSSCs were measured and analyzed by using electrochemical impedance analyzer (EIS).

Using the mesh electrode for TCO-Iess dye-sensitized solar cells application (메쉬전극을 이용한 TCO-Iess 염료태양전지제작)

  • Jung, Ki-Young;Ju, In-Suk;Sung, Youl-Moon;Kwak, Dong-Joo;Park, Cha-Soo
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2009.10a
    • /
    • pp.403-405
    • /
    • 2009
  • 본 연구에서는 염료태양전지의 제작 시 고가의 TCO전극을 사용하지 않고 간단히 광전극을 대체할 수 있는 방법으로 메쉬전극을 이용하는 TCO-less 염료태양전지를 제작하였다. 메쉬전극을 이용한 TCO-less 염료태양전지의 구조는 "Glass / 메쉬전극($TiO_2$를 딥코팅 한 후 염료를 흡착시킴) / 전해질 / 멤브레인 필터 / 상대전극(Pt-coated TCO) / Glass" 로 구성된다. 제작된 샘플의 광전변환 효율은 약 1.5% 였으며 fill factor는 0.55로 나타났다. 향후 계획으로 효율을 향상 시킬 수 있는 방법을 도입하여 광전류밀도와 fill factor를 개선하는 연구를 진행할 예정이다.

  • PDF

Synthesis of TCO-less Dye Sensitized Solar Cells (TCO-less 염료태양전지 제작)

  • Heo, Jong-Hyun;Kwak, Dong-Joo;Sung, Youl-Moon;Kim, Tae-Heung
    • Proceedings of the KIEE Conference
    • /
    • 2009.07a
    • /
    • pp.1074_1075
    • /
    • 2009
  • A new type of dye-sensitized solar cells(DSCs) based on Ti-mesh electrode without using TCO layer is fabricated for high-efficient low-cost solar cell application. The TCO-less DSCs sample is composed of a [glass/ dye sensitized $TiO_2$ layer/ Ti-mesh electrode/ electrolyte/ metal counter electrode]. The Ti-mesh electrode with high conductivity can collect electrons from the $TiO_2$ layer and allows the ionic diffusion of $I^-/I_3^-$ through the mesh hole. Thin Ti-mesh ($\sim40{\mu}m$ in thickness) electrode material is processed using rapid prototype method. Electrical performance of as-fabricated DSCs is presented and discussed in detail.

  • PDF

Synthesis of Dye-sensitized Solar Cells with Titanium Mesh Electrode (티타늄 메쉬 전극구조를 이용한 염료 태양전지 제작)

  • Paeng, Sung-Hwan;Kim, Doo-Hwan;Park, Min-Woo;Sung, Youl-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.12
    • /
    • pp.2436-2440
    • /
    • 2009
  • In this work, TCO-less dye-sensitized solar cells (DSCs) using Ti-mesh layer is fabricated for high-efficient low-cost solar cell application. The Ti-mesh metal can replace TCO in the photo-electrode part of DSCs, thus the cell structure is composed of a glass/dye sensitized TiO2 particle/ Ti-mesh layer/electrolyte/Pt sputtered counter electrode/ glass. The Ti-mesh electrode with high conductivity can collect electrons from the $TiO_2$ layer and allows the ionic diffusion of $I^-/I_3^-$ through the mesh hole. Thin Ti-mesh ($\sim40{\mu}m$ in thickness) electrode material is processed using rapid prototype method. The efficiency of prepared TCO-less DSCs sample is about 1.45 % ((ff: 0.5, Voc: 0.52V, Jsc: 5.55 $mA/cm^2$).

A Study on the TCO-less Dye-Sensitized Solar Cell Fabricated with Using Conductive Sputtering Carbon Electrodes (전도성 스퍼터링 탄소전극을 사용한 TCO-less 염료감응형 태양전지의 특성에 관한 연구)

  • Joo, Yong Hwan;Kim, Nam-Hoon;Park, Yong Seob
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.29 no.11
    • /
    • pp.725-728
    • /
    • 2016
  • We investigated the characterizations of carbon films fabricated by dual magnetron sputtering under various film thickness for the electrodes in TCO-less DSSC (dye-sensitized solar cells). Carbon films prepared at various conditions were exhibited smooth and uniform surfaces without defects. Also, the rms surface roughness of carbon films was decreased from 2.25 nm to 1.0 nm with the increase of film thickness. The sheet resistance as the electrical properties are improved from $11.2{\times}10^{-3}$ to $2.28{\times}10^{-3}$ with the increase of film thickness. In the results, the performance of TCO-less DSSC critically depended on the film thickness of working electrodes, indicating the conductivity of carbon films.

Characteristics of Ti Thin films and Application as a Working Electrode in TCO-Less Dye-Sensitized Solar Cells

  • Joo, Yong Hwan;Kim, Nam-Hoon;Park, Yong Seob
    • Transactions on Electrical and Electronic Materials
    • /
    • v.18 no.2
    • /
    • pp.93-96
    • /
    • 2017
  • The structural, electrical and optical properties of Ti thin films fabricated by dual magnetron sputtering were investigated under various film thicknesses. The fabricated Ti thin films exhibited uniform surfaces, crystallinity, various grain sizes, and with various film thicknesses. Also, the crystallinity and grain size of the Ti thin films increased with the increase of film thickness. The electrical properties of Ti thin films improved with the increase of film thickness. The results showed that the performance of TCO-less DSSC critically depended on the film thickness of the Ti working electrodes, due to the conductivity of Ti thin film. However, the maximum conversion efficiency of TCO-less DSSC was exhibited at the condition of 100 nm thickness due to the surface scattering of photons caused by the variation of grain size.

A Study on the Fabrication of Dye-Sensitized Solar Cells Consisting of Ti Electrodes by Electron-beam Evaporation Method (전자빔 증착법에 의한 티타늄 전극 구조 염료 태양전지 제작에 관한 연구)

  • Kim, Yun-Gi;Shim, Choung-Hwan;Kim, Hyun-Gyu;Sung, Youl-Moon;Kim, Dong-Hyun;Lee, Hae-June;Park, Chung-Hoo;Lee, Ho-Jun
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.4
    • /
    • pp.754-758
    • /
    • 2010
  • In general, Dye-sensitized Solar Cells(DSCs) consist of the nanocrystalline titanium dioxide($TiO_2$) layer which is fabricated on a transparent conductive oxide(TCO) layer such as $F/SnO_2$ glass, a dye adhered to the $TiO_2$, an electrolyte solution and platinum-coated TCO. Among these components, two TCO substrates are estimated to be about 60% of the total cost of the DSCs. Currently novel TCO-less structures have been investigated in order to reduce the cost. In this study, TCO-less DSCs consisting of titanium electrodes were investigated. The titanium electrode is deposited on top of the porous $TiO_2$ layer using electron-beam evaporation process. The porosity of the titanium electrode was found out by the SEM analysis and dye adhesion. As a result, when the thickness of the titanium electrode increased, the surface resistance decreased and the conversion efficiency increased relatively.