• Title/Summary/Keyword: TCE

Search Result 433, Processing Time 0.022 seconds

The Effect of Organic Matter and Lime Treatment on Trichloroethylene Adsorption by Soil (유기물과 석회 처리 수준이 토양의 Trichloroethylene 흡착에 미치는 영향)

  • 이군택;류순호;이민효
    • Journal of Korea Soil Environment Society
    • /
    • v.1 no.1
    • /
    • pp.11-17
    • /
    • 1996
  • Trichloroethylene(TCE) is the organic compound which is used variously at the industrial areas. It contaminates soils and groundwater by leaked storage tank, careless treatment in field and the effluent from waste landfills. This study was carried out to identify adsorptive behavior of TCE by soil. Batch experiments were conducted at different soil-organic matter content and lime treatment to determine Freundlich isothermal adsorption equation constant, k and n, for TCE. Sewage sludge cake was applied to make different soil-organic matter content with the level of Oton/ha(S1), 50ton/ha(S2), 100ton/ha(S3). Lime(calcium hydroxide) was treated with the level of 2ton/ha, 4ton/ha, 6ton/ha, 10ton/ha. Freundlich isothermal adsorption equations obtained from experiment with sewage sludge cake were as follows (on condition that the level of TCE applied to soil ranged from 0.5ng/g soil to 2.5 ng/g soil.) : S1 :x/m = 0.393 $C^2$, S2 : x/m = 0.436 $C^2$, S3 : x/m = 0.636 $C^2$Value of k was increased in higher order of 51, 52, 53 with increased level of sewage sludge cake application. From this results, soil which was applied higher level of sewage sludge cake had a good ability on TCE adsorption. With increased the level of lime application, pH of the soil was increased and the ability of the soil in TCE adsorption was decreased.

  • PDF

Sonolysis of Trichloroethylene in the Multi Ultrasound Irradiation Reactor (다중 초음파 조사 반응조에서의 TCE의 초음파 분해)

  • Lee, Min-Ju;Oh, Je-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.10
    • /
    • pp.873-882
    • /
    • 2009
  • Sonolysis of TCE (Trichloroethylene) was performed in 584 kHz rectangular reactor. At first, the effect of acoustic power and aqueous temperature which are both important factors to operate ultrasound system on sonolysis of TCE were examined under one side irradiation condition. First degradation rate constants of TCE and chloride yields were increased with increasing acoustic power from 100 to 300 W. And increasing the aqeuous temperature resulted in the increase of first degradation rate constants of TCE and the decrease of chloride yield. Sonolysis of TCE was performed under multi ultrasound irradiation conditions that total acoustic power of 300 W was distributed according to the number of irradiation sides. First degradation rate constants of TCE followed the order 4 sides > 3 sides > 1 side > 2 sides (parallel) > 2 sides (orthogonal). When comparing the experimental results under parallel and orthogonal irradiation conditions of 2 sides with 300 and 450 W, first degradation rate constants of TCE were similar, while production rate constants of hydrogen peroxide were more higher at parallel conditions compared to orthogonal conditions.

Cometabolism of Trichloroethylene by a Phenol-Degrading Bacterium, Pseudomonae sp. EL-04J (페놀분해세균인 Pseudomonas sp. EL-04J에 의한 Trichloroethylene의 공동대사)

  • Kim, Ho-Seong;Park, Geun-Tae;Son, Hong-Ju;Park, Seong-Hun;Lee, Sang-Jun
    • Journal of Environmental Science International
    • /
    • v.10 no.5
    • /
    • pp.359-364
    • /
    • 2001
  • Pseudomanas sp. EL-04J was previously isolated from phenol-acclimated activated sludge. This bacterium was capable of degrading phenol and cometabolizing trichloroethylene (TCE). After precultivation in the mineral salts medium containing phenol as a sole carbon source, Pseudomonas EL-04J degraded 90% of TCE $25 \mu\textrm{M}$ within 20 hours. Thus, phenol-induced Pseudomonas sp. EL-04J cells can bdegrade TCE. Followsing a transient lag period, Pseudomonas sp. EL-04J cells degraded TCE at concentrations of at least $250 \mu\textrm{M}$ with no apparent retardation in rate, but the transformance capacity of such cells was limited and depended on the cell concentration. The degradation rate of TCE followed the Michaelis-Menten kinetic model. The maximum degradation ratio ($V_{max}$) and saturation constant ($K_{m}$) were $7nmo {\ell}/min{\cdot}mg$ cell protein and $11 \mu\textrm{M}$, respectively. Cometabolism of TCE by phenol fed experiment was evaluated in $50m {\ell}$ serum vial that contained $10m {\ell}$ of meneral sals medium supplemented with $10 \mu\textrm{M}$ TCE degradation was inhibited in the initial period of 1 mM phenol addition, but after that time Pseudomonas sp. EL-04J cells degraded TCE and showed cell growth.

  • PDF

Investigation for TCE Migration and Mass Discharge Changes by Water Table Rising in Porous Media (투수성 매질 내에서의 지하수위 상승에 따른 TCE 거동특성 및 오염물 이동량 변화 연구)

  • Lee, Dong Geun;Moon, Hee Sun;Lee, Kang-Kun
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.2
    • /
    • pp.27-35
    • /
    • 2013
  • In this study, three dimensional and two dimensional laboratory experiments were conducted to investigate the effect of water table rising on DNAPL migration, contaminants mass discharge ($M_d$), and residual NAPL distribution. The accumulation of TCE in unsaturated zone was observed in both two and three dimensional experiments. This implies DNAPL sources could exist in unsaturated zone at contaminated sites. It has been investigated that the TCE concentration is proportional to the areal ratio of residual TCE. This means the residual TCE obviously could affect the TCE concentration in aquifer system. The results of the two-dimensional experiment indicated that the contaminant sources in unsaturated zone could lead the $M_d$ increasing with water table rising and the source zone heterogeneity could also highly affect the $M_d$.

Analysis of aqueous environment iron dissolution in different conditions (조건의 변화에 따른 수중 환경 내에서의 철 용해 분석)

  • Bae, Yeun-Ook;Min, Jee-Eun;Park, Jae-Woo
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.807-810
    • /
    • 2008
  • Permeable reactive barriers containing Zero-valent iron (ZVI) are used to purify ground-water contaminants. One of the representative contaminant is trichloroethylene (TCE). ZVI can act as a reducing agent of TCE. When ZVI is oxidized to Ferric iron, TCE reduced to Ethene, which is non-harmful matter. As a ZVI becomes ferric iron, the reducing effect decreases and iron becomes unavailable. So, constant reduction of TCE requires the regular supply of reducing agent. So, we use Iron-reducing bacteria(IRB) to extend the TCE degrading ability. We perform three experiment DI water, DI water with medium, and DI water with medium and IRB. By the experiment we try to found the dissolve ability.

  • PDF

Degradation of TCE by Persulfate Oxidation with Various Activation Methods (heat, Fe2+, and UV) for ex-situ Chemical Oxidation Processes (Ex-situ 화학적 산화처리 적용을 위하여 다양하게 활성화(heat, Fe2+, UV)된 persulfate를 이용한 TCE 분해에 대한 연구)

  • Kim, Han-Sol;Do, Si-Hyun;Park, Ki-Man;Jo, Young-Hoon;Kong, Sung-Ho
    • Journal of Soil and Groundwater Environment
    • /
    • v.17 no.6
    • /
    • pp.43-51
    • /
    • 2012
  • Rreactivity of persulfate (PS) for oxidation of TCE under various conditions such as heat, $Fe^{2+}$, and UV was investigated. It was found that degradation rate of TCE increased with increasing temperature from 15 to $35^{\circ}C$. At pH 7.0, the rate constants (k) at 15, 25, 30, and $35^{\circ}C$ were 0.07, 0.30, 0.74, and $1.30h^{-1}$, respectively. For activation by $Fe^{2+}$, removal efficiency of TCE increased with increasing $Fe^{2+}$ concentration from 1.9 mM to 11 mM. The maximum removal efficiency of TCE was approximately 85% when pH of the solution dropped from 7.0 to 2.5. Degradation of TCE by UV-activated PS was the most effective, showing that the degradation rate of TCE increased with inreasing PS dosage; the rate constants (k) at 0.5, 2.5, and 10 mM were 34.2, 40.5, and $55.9h^{-1}$, respectively. Our results suggest that PS activation by UV/PS process could be the most effective in activation processes tested for TCE degradation. For oxidation process by PS, however, pH should be observed and adjusted to neutral conditions (i.e., 5.8-8.5) if necessary.

Oxidative Degradation Kinetics of Trichloroethylene in Groundwater by Permanganate (과망간산을 이용한 지하수내 TCE 분해의 동력학적 해석)

  • Yang, Seung-Guan;Ko, Seok-Oh
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.28 no.4
    • /
    • pp.397-401
    • /
    • 2006
  • A laboratory study was conducted to evaluate the kinetics of oxidation of trichloroethylene(TCE) in groundwater by potassium permanganate($KMnO_4$). Consumption of permanganate by TCE and aquifer material was also evaluated to obtain an appropriate injection rate of $KMnO_4$. TCE degradation by $KMnO_4$ in the absence of aquifer material was effective with a pseudo-first order rate constant, $k_{obs}=5.24{\times}10^{-3}s^{-1}\;at\;KMnO_4=500mg/L$. TCE oxidation by $KMnO_4$ was found to be second order reaction and the rate constant, $k=0.65{\pm}0.08M^{-1}s^{-1}$. Meanwhile, aquifer materials from the field site were actively reacted with permanganate, resulting in the significant consumption of $KMnO_4$. It might be attributed to the existence of metal oxides in the aquifer materials.

Sonolysis of Trichloroethylene in a Continuous Flow Reactor with the Multi Ultrasound Irradiation (연속식 다중 초음파 반응조에서 TCE의 초음파 분해)

  • Lee, Min-Ju;Oh, Je-Ill
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.31 no.6
    • /
    • pp.419-427
    • /
    • 2009
  • To test applicability for continuous flow treatment of ultrasound technology, sonolysis of TCE aqueous solution using 584 kHz multi irradiation reactor was performed under batch and continuous flow conditions. Under batch condition (3 and 4 sides irradiation, 600 W), first order degradation rate constant of TCE was higher under 4 sides than 3 sides irradiation conditions, while the generation of $H_2O_2$ and chloride was similar under both irradiation conditions. Under continuous flow condition with 4 sides irradiation, removal efficiencies of TCE in steady-state were decreased from 83 to 48% with increasing flow rate from 67 to 300 mL/min at 600 W, and were increased from 14 to 75% with increasing acoustic power from 100 to 600 W at 100 mL/min. Removal efficiency of TCE in groundwater was decreased 10% compared to in distilled water at 100 mL/min and 600 W.

A Recombinant Soil Bacterium Which Efficiently Degrades Trichloroethylene (삼염화에틸렌을 분해하는 유전자재조합 토양세균에 관한 연구)

  • Kim, Young-Jun;Han, Gee-Bong;Chung, Jae-Chun
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.11 no.4
    • /
    • pp.49-56
    • /
    • 2003
  • The strain Ralstonia eutopha JMP134 (formerly Alcaligenes eutrophus JMP134) can degrade trichloroethylene(TCE) through a chromosomal phenol-dependent pathway. The phenol hydroxylase was previously found to be a single responsible enzyme for TEC degradation. Here, we demonstrate that a recombinant bacterium, R. eutopha AEK301, one of Tn5-induced mutants of JMP134 containing a recombinant plasmid pYK3011, degrades TCE in the absence of inducer, phenol and in the presence of various carbon sources. Complete removal of TCE ($50{\mu}M$) was observed in minimal medium containing only 0.05% ethanol as a carbon source within 24 hours. The bacterium removed $200{\mu}M$ of TCE to below detectable level within two days under non-selective pressure. When TCE concentration was increased up to $400{\mu}M$, the degradation had been continued until two days, then ceased with removal of 70% of detectable TCE.

  • PDF

Separation of Aqueous Chlorinated Hydrocarbons by Pervaporation (투과증발법을 이용한 염소계 화합물 수용액의 분리)

  • 이영무;유승민;오부근
    • Membrane Journal
    • /
    • v.6 no.1
    • /
    • pp.53-57
    • /
    • 1996
  • Polysulfone ultrafiltration membrane was coated with polyisobutylene(PIB) as a top layer to separate chlorinated hydrocarbons. The solubility parameter differences between PIB, water and perchloroethylene(PCE) or trichloroethylene(TCE) show that the solubility parameter difference between PIB and TCE or PCE is similar while that between PIB and water is far less, indicating that PIB is selective to chlorinated hydrocarbons. The pervaporation separation of TCE and PCE shows that TCE is concentrated more than four times, by PIB composite membrane, while PCE is concentrated more than thirteen times. This result shows that PIB composite membrane in this study seems to be an appropriate selective layer for the separation of TCE and PCE from aqueous organic solutions.

  • PDF