• Title/Summary/Keyword: TBM selection

Search Result 28, Processing Time 0.016 seconds

Study on the selection of TBM in consideration of field conditions (시공여건을 반영한 TBM선정 방법에 대한 연구)

  • Oh, Joon-Geun;Sagong, Myung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.16 no.2
    • /
    • pp.125-133
    • /
    • 2014
  • In this study, TBM selection methods to meet soil and site conditions were presented. Factors and excavation equipment affecting TBM selection by soil and environmental condition were selected and classified. Weights between equipment and influencing factors selected were calculated by applying the AHP (Analytic Hierarchy Process) method. The results of the analysis influence factors, Ground condition was a major factor in objective factors and strength was a major factor in the hard condition of criteria factors and water pressure was a major factor in the soft ground condition of criteria factors. In Environment condition, existence of adjacent structures was evaluated more important than existence of feasible site. Lastly, Adequacy was verified through the deduction of results that coincide with input equipment by applying derived weights to actual site conditions.

Analysis on prediction models of TBM performance: A review (TBM 굴진성능 예측모델 분석: 리뷰)

  • Lee, Hang-Lo;Song, Ki-Il;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.245-256
    • /
    • 2016
  • Prediction of TBM performance is very important for machine selection, and for reliable estimation of construction cost and period. The purpose of this research is to analyze the evaluation process of various prediction models for TBM performance and applied methodology. Based on the solid literature review since 2000, a classification system of TBM performance prediction model is proposed in this study. Classification system suggested in this study can be divided into two stages: selection of input parameter and application of prediction techniques. We also analyzed input and output parameters for prediction model and frequency of use. Lastly, the future research and development trend of TBM performance prediction is suggested.

A study on the selection of optimal cross section according to the ventilation system in TBM road tunnels (TBM 도로터널의 환기방식에 따른 최적단면 선정에 관한 연구)

  • Lee, Ho-Keun;Kang, Hyun-Wook;Kim, Hyun-Soo;Kim, Hong-Moon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.15 no.2
    • /
    • pp.135-148
    • /
    • 2013
  • Recently, road tunnels have become longer and the plans for long and deep road tunnel have been underway in urban areas. These long and deep tunnel excavations include NATM and TBM. Shield TBM is applied to around 80% of traffic tunnels in Europe, and approximately 30% of them in other developed countries. However, as much of equipment is imported from foreign countries at high prices and distribution rate of TBM tunnel is considerably low in Korea, NATM excavation method is commonly used. To increase TBM tunnel, it is necessary to do assure economic feasibility with the supply-demand of TBM equipment. For this, the selection of standardized TBM diameter is urgently needed. Therefore, the study aims to estimate the standardized optimum section properties of TBM by examining TBM excavation cross section utilization depending on the volume of traffic, the number of lane and its cross-section type(single or double deck), and ventilation system.

TBM tunnelling on Rock

  • Pelizza, Sebastiano;Kim, Sang-Hwan
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.6 no.2
    • /
    • pp.85-100
    • /
    • 2004
  • In this paper the historical and technological developments of rock TBM and the technical classification of the machines proposed by ITA (International Tunnelling Association) are initially presented. Then the general criteria for the TBMs selection are discussed and at the end the limiting geological conditions for the application of TBMs are analysed.

  • PDF

The $Mer{\aa}ker$ TBM Project in Norway (노르웨이 메로케르 수력발전소의 TBM 굴착)

  • Park Yeonjun;Park Chulwhan
    • Tunnel and Underground Space
    • /
    • v.15 no.1 s.54
    • /
    • pp.22-27
    • /
    • 2005
  • This paper presents an article explaining a TBM project overall in Norway. The paper which published in Norwegian TBM Tunnelling by Norwegian Soil and Rock Eng. Assoc. in 1998, contains most of the items considered in TBM tunnelling. New powerplants, tunnels and dams have been built at Meraker in Central Norway. A total of 44 km of tunnels with cross sections varying from $7\;m^2\;to\;32\;m^2$ have been excavated in hard rock formation. Tunnel of 10 km with the 3.5 m diameter was excavated by a HP TBM in a year. his project gives the special attention to the TBM drive and equipment selection, including planning, site organization and performance.

Several models for tunnel boring machine performance prediction based on machine learning

  • Mahmoodzadeh, Arsalan;Nejati, Hamid Reza;Ibrahim, Hawkar Hashim;Ali, Hunar Farid Hama;Mohammed, Adil Hussein;Rashidi, Shima;Majeed, Mohammed Kamal
    • Geomechanics and Engineering
    • /
    • v.30 no.1
    • /
    • pp.75-91
    • /
    • 2022
  • This paper aims to show how to use several Machine Learning (ML) methods to estimate the TBM penetration rate systematically (TBM-PR). To this end, 1125 datasets including uniaxial compressive strength (UCS), Brazilian tensile strength (BTS), punch slope index (PSI), distance between the planes of weakness (DPW), orientation of discontinuities (alpha angle-α), rock fracture class (RFC), and actual/measured TBM-PRs were established. To evaluate the ML methods' ability to perform, the 5-fold cross-validation was taken into consideration. Eventually, comparing the ML outcomes and the TBM monitoring data indicated that the ML methods have a very good potential ability in the prediction of TBM-PR. However, the long short-term memory model with a correlation coefficient of 0.9932 and a route mean square error of 2.68E-6 outperformed the remaining six ML algorithms. The backward selection method showed that PSI and RFC were more and less significant parameters on the TBM-PR compared to the others.

Prediction of Uniaxial Compressive Strength of Rock using Shield TBM Machine Data and Machine Learning Technique (쉴드 TBM 기계 데이터 및 머신러닝 기법을 이용한 암석의 일축압축강도 예측)

  • Kim, Tae-Hwan;Ko, Tae Young;Park, Yang Soo;Kim, Taek Kon;Lee, Dae Hyuk
    • Tunnel and Underground Space
    • /
    • v.30 no.3
    • /
    • pp.214-225
    • /
    • 2020
  • Uniaxial compressive strength (UCS) of rock is one of the important factors to determine the advance speed during shield TBM tunnel excavation. UCS can be obtained through the Geotechnical Data Report (GDR), and it is difficult to measure UCS for all tunneling alignment. Therefore, the purpose of this study is to predict UCS by utilizing TBM machine driving data and machine learning technique. Several machine learning techniques were compared to predict UCS, and it was confirmed the stacking model has the most successful prediction performance. TBM machine data and UCS used in the analysis were obtained from the excavation of rock strata with slurry shield TBMs. The data were divided into 8:2 for training and test and pre-processed including feature selection, scaling, and outlier removal. After completing the hyper-parameter tuning, the stacking model was evaluated with the root-mean-square error (RMSE) and the determination coefficient (R2), and it was found to be 5.556 and 0.943, respectively. Based on the results, the sacking models are considered useful in predicting rock strength with TBM excavation data.

Development and implementation of statistical prediction procedure for field penetration index using ridge regression with best subset selection (최상부분집합이 고려된 능형회귀를 적용한 현장관입지수에 대한 통계적 예측기법 개발 및 적용)

  • Lee, Hang-Lo;Song, Ki-Il;Kim, Kyoung Yul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.857-870
    • /
    • 2017
  • The use of shield TBM is gradually increasing due to the urbanization of social infrastructures. Reliable estimation of advance rate is very important for accurate construction period and cost. For this purpose, it is required to develop the prediction model of advance rate that can consider the ground properties reasonably. Based on the database collected from field, statistical prediction procedure for field penetration index (FPI) was modularized in this study to calculate penetration rate of shield TBM. As output parameter, FPI was selected and various systems were included in this module such as, procedure of eliminating abnormal dataset, preprocessing of dataset and ridge regression with best subset selection. And it was finally validated by using field dataset.

Case study for technical evaluation and check list to decision of optimized TBM (최적 TBM 장비 발주를 위한 선정 기준 및 체크리스트 사례 검토)

  • Kim, Ki-Hwan;Kim, Hyouk;Kim, Seong-Cheol;Kang, Si-On
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.385-392
    • /
    • 2021
  • When ordering a slurry shield TBM to be used for power cable tunneling, the client organizes an evaluation committee composed of experts, suggest the criteria and evaluation method for technical specifications for supplier selection, and based on the manufacturer's technical proposal were attempted to evaluate and select. It is expected to be referred to as a guideline for future projects to using Shield TBM as one of the methods of verifying performance and quality in advance and securing economic feasibility in the shield TBM tunneling in the recent increasing trend.

A Study of the Large Diameter Shield TBM Excavation for Subway Tunnels (지하철 터널에 적용된 대구경 쉴드 TBM의 굴착성능 연구 분석)

  • Lee, Seong-Won;Kang, Moon-Gu
    • Proceedings of the KSR Conference
    • /
    • 2010.06a
    • /
    • pp.1500-1505
    • /
    • 2010
  • The objective of this study is controlling of the large diameter Shield TBM excavation for subway tunnels. In this paper, it will focus on the selection of Shield TBM and the problems of excavation due to unusual abrasion of the Disk Cutters and the distorted Cutter Mounts, in mixed layer of soil in below and hard rock in above, and in rock layer. And also, it will be discussed that the type of ground improvement to change and repair the Disk Cutters and the distorted Cutter Mounts, Advance Rate, Cutter Torque, etc. The results of this study will be using controlling of the excavation in various large diameter Shield TBM for subway tunnels.

  • PDF