• Title/Summary/Keyword: TBM construction

Search Result 204, Processing Time 0.027 seconds

A Study on Earth Pressure Calculating Method about Shield TBM Tunnel Segments in the Rock (암반층에서 쉴드 TBM 터널 세그먼트의 작용하중 산정방법에 관한 연구)

  • Chun, Byungsik;Ki, Jungsu;Kang, Taehee;Kwag, Yunehyeong;Byun, Yoseph
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.5
    • /
    • pp.13-21
    • /
    • 2014
  • This study analyzed the differences in the analysis techniques through a comparative analysis of the various segment's modeling techniques of Shield TBM method and proposed reasonable modeling techniques. Also, this study suggested reasonable estimating methods of load to be applicable in the field through the load analysis and three-dimensional finite element analysis by estimating model of rock mass relaxation load. Estimating method of relaxation area by rock mass rating makes no odds of output in subgrade with high rock mass rating, but so the difference of output is large, that is judged to set conservative design off. In estimating result of rock mass relaxation area by three-dimensional analysis relaxation area of subgrade with low-grade soil was predicted to be positioned at medium-range of many methods, in case of designing segment in subgrade with low-grade soil it needs to actively review estimation of relaxation area through three-dimensional analysis reflecting mechanical tunnel excavation.

Development and implementation of statistical prediction procedure for field penetration index using ridge regression with best subset selection (최상부분집합이 고려된 능형회귀를 적용한 현장관입지수에 대한 통계적 예측기법 개발 및 적용)

  • Lee, Hang-Lo;Song, Ki-Il;Kim, Kyoung Yul
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.6
    • /
    • pp.857-870
    • /
    • 2017
  • The use of shield TBM is gradually increasing due to the urbanization of social infrastructures. Reliable estimation of advance rate is very important for accurate construction period and cost. For this purpose, it is required to develop the prediction model of advance rate that can consider the ground properties reasonably. Based on the database collected from field, statistical prediction procedure for field penetration index (FPI) was modularized in this study to calculate penetration rate of shield TBM. As output parameter, FPI was selected and various systems were included in this module such as, procedure of eliminating abnormal dataset, preprocessing of dataset and ridge regression with best subset selection. And it was finally validated by using field dataset.

A Design and Operation of EPBM Applied in Fort Canning Boulder Bed of Singapore (싱가포르 포트캐닝 전석층에 적용된 EPBM의 설계 및 시공)

  • Kim, Uk Young;Noh, Seung Hwan;Noh, Sang Rim
    • Tunnel and Underground Space
    • /
    • v.25 no.5
    • /
    • pp.417-422
    • /
    • 2015
  • This paper introduces the design and operational considerations for TBM tunneling in boulder bed which poses significant problems in terms of advance rate and machine wear. Managing these problems is difficult since normal soil investigation techniques do not accurately predict the presence and frequency of boulders. This has leads to considerable extra costs and delays during construction. In this paper, EPBM design and operational parameters, cutter wear characteristics and soil conditioning method in soft ground condition were studied and key successes were highlighted for future projects in similar ground condition.

TBM segment lining section design of hypothetical subsea tunnels (가상 해저터널 TBM공법 적용 시 세그먼트 단면설계)

  • Choi, Jung-Hyuk;Yoo, Chung-Sik
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.1
    • /
    • pp.49-63
    • /
    • 2015
  • In this paper, the results of evaluation on the member forces in the virtual subsea tunnel lining segments and optimal thickness of the segment with changes in depth were presented. To evaluate member forces on the hypothetical subsea tunnelling cases were developed and the segmental lining member forces were calculated by performing structural analysis using the 2-Ring Beam model. Through a preliminary reinforcement design review of the cross-section using calculated member force, optimal reinforcement design was selected. Based on the results, the variations of member forces with construction conditions such as the cover depth and the hydraulic pressure are presented. In addition, optimum segment lining designs were developed for various tunnelling conditions.

A study on the utilization of abrasive waterjet for mechanical excavation of hard rock in vertical shaft construction (고강도 암반에서 수직구 기계굴착을 위한 연마재 워터젯 활용에 관한 연구)

  • Seon-Ah Jo;Ju-Hwan Jung;Hee-Hwan Ryu;Jun-Sik Park;Tae-Min Oh
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.5
    • /
    • pp.357-371
    • /
    • 2023
  • In cable tunnel construction using TBM, the vertical shaft is an essential structure for entrance and exit of TBM equipment and power lines. Since a shaft penetrates the ground vertically, it often encounters rock mass. Blasting or rock splitting methods, which are mainly used to the rock excavation, cause public complaints due to the noise, vibration and road occupation. Therefore, mechanical excavation using vertical shaft excavation machine are considered as an alternative to the conventional methods. However, at the current level of technology, the vertical excavation machine has limitation in its performance when applied for high strength rock with a compressive strength of more than 120 MPa. In this study, the potential utilization of waterjet technology as an excavation assistance method was investigated to improve mechanical excavation performance in the hard rock formations. Rock cutting experiments were conducted to verify the cutting performance of the abrasive waterjet. Based on the experimental result, it was found that ensuring excavation performance with respect to changing in ground conditions can be achieved by adjusting waterjet parameters such as standoff distance, traverse speed and water pressure. In addition, based on the relationship between excavation performance, uniaxial compressive strength and RQD, it was suggested that excavation performance could be improved by artificially creating joints using the abrasive waterjet. It is expected that these research results can be utilized as fundamental data for the introduction of vertical shaft excavation machines in the future.

Development for prediction system of TBM tunnel face ahead using probe drilling equipment and drilled hole imaging equipment (선진시추장비와 시추공벽 영상화 장비를 이용한 TBM 전방 지반평가시스템 개발)

  • Kim, Ki-Seog;Kim, Jong-Hoon;Jeong, Lae-Chul;Lee, In-Mo;Cho, Gye-Chun
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.17 no.3
    • /
    • pp.393-401
    • /
    • 2015
  • In the construction of a TBM tunnel, it is very important to acquire accurate information of the excavated rock mass for an efficient and safe work. In this study, we developed the prediction system of TBM tunnel face ahead using probe drilling equipment and drilled hole imaging equipment to predict rock mass conditions of the tunnel face ahead. The prediction system consists of the probe drilling equipment, drilled hole imaging equipment and analysis software. The probe drilling equipment has been developed to be applicable to both non-coring and coring. Also the probe drilling equipment can obtain the drilling parameters such as feed pressure, torque pressure, rotation speed, drilling speed and so on. The drilling index is converted to the drilling index RMR through the correlation between a drilling index and core RMR. The developed system verification was carried out through a slope and tunnel field application. From the field application result, the non-coring is four times faster than a coring and the drilling index RMR and core RMR are similar in the distribution range. This system is expected to predict the rock mass conditions of the TBM tunnel face ahead very quickly and efficiently.

Study on Driving Simulation of Spoke-type Shield TBM Considering Operation Conditions (TBM 운전조건을 고려한 스포크형 쉴드TBM의 굴진모사 연구)

  • Choi, Soon-Wook;Lee, Hyobum;Choi, Hangseok;Chang, Soo-Ho;Kang, Tae-Ho;Lee, Chulho
    • Tunnel and Underground Space
    • /
    • v.29 no.6
    • /
    • pp.456-467
    • /
    • 2019
  • In this study, the discrete element method was used to simulate the excavation of spoke-type shield TBM. The horizontal stress coefficient was used for the ground to simulate the increase of the horizontal stress according to the depth, and the driving conditions were set based on the torque generated from the cutterhead of the TBM to excavate within the operating range. That is, when the value of the torque generated at the cutterhead exceeds the given operating condition, the speed of excavation is constantly reduced, and conversely, the method of increasing the speed of excavation is considered. The change speed of the excavation was given the minimum change requirement in consideration of the driver's review time, and the change was possible according to the excavation conditions. In order to use these conditions, the user-subroutine was considered separately, and the results show that the DEM model were able to analyze the excavation within the considered operating range.

Study on the effect of tail void grouting on the short- and long-term surface settlement in the shield TBM Tunneling using numerical analysis (쉴드TBM터널에서 뒤채움 주입이 지반의 단기·장기 침하에 미치는 영향에 대한 수치해석적 연구)

  • Oh, Ju-Young;Park, Hyunku;Kim, Dohyoung;Chang, Seokbue;Lee, Seungbok;Choi, Hangseok
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.19 no.2
    • /
    • pp.265-281
    • /
    • 2017
  • For shallow tunnel constructions, settlement of the ground surface is a main issue. Recent technical developments in shield TBM tunneling technique have enabled a decrease in such settlements based on tunneling with ground deformation controls. For this objective, the tail void grouting is a common practice. Generally surface settlements in a soil of low permeability occur during a tunnel construction but also during a long period after completion of the tunnel. The long-term settlements occur mainly due to consolidation around the tunnel. The consolidation process is caused and determined by the tail void grouting which leads to an excess pore water pressure in the vicinity of the tunnel. Because of this, the grouting pressure has a strong effect on the long-term settlements in the shield tunneling. In order to investigate this effect, a series of coupled hydro-mechanical 3D finite element simulations have been performed. The results show that an increase in grouting pressure reduces the short-term settlements, but in many cases, it doesn't lead to a reduction of the final settlements after the completion of consolidation. Thereby, the existence of a critical grouting pressure is identified, at which the minimal settlements are expected.

DEM-based numerical study on discharge behavior of EPB-TBM screw conveyor for rock (EPB-TBM 암반굴착시 스크류컨베이어의 배토 거동에 대한 DEM 기반 수치해석적 연구)

  • Lee, Gi-Jun;Kwon, Tae-Hyuk;Kim, Huntae
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.21 no.1
    • /
    • pp.127-136
    • /
    • 2019
  • Tunnel construction by TBMs should be supported by the performance of a screw conveyor in order to obtain the optimum penetration rate, so studies related to the screw conveyor performance have been being conducted. Compared to the study on the performance of the screw conveyor for the soil, however, the research on the performance of the screw conveyor for the rock is insufficient. Considering the domestic tunnel sites with more rock layers than soil layers, simulation of discharge of 6 types of rock chips by the screw conveyor was conducted using DEM. Regardless of the shape and volume of the rock chips, the discharge rates of the rock chips by the parallel placed screw conveyor at a speed of 10 RPM in the same rock mass were about 20% (standard deviation: 1.3%) of the maximum volume of discharge rate by the screw conveyor. It is expected that this study can be used as a reference material for screw conveyor design and operation in TBM excavations in rock masses.

A Study of Rockbursts Within a Deep Mountain TBM Tunnel (산악 TBM 터널에서 발생한 암반파열 현상에 대한 연구)

  • Lee, Seong-Min;Park, Boo-Seong
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.6
    • /
    • pp.39-47
    • /
    • 2003
  • Rockbursts are mainly caused by a sudden release or the stored strain energy in the rock mass. They have been the major hazard in deep hard rock mines but rarely occur in tunnels. Due to the short history and limited information on rockbursts, the topic has rarely been studied in Korea. Some cases of rockbursts, however, have been reported during construction of a mountain tunnel for waterway. This study focuses on analyzing data on rockbursts obtained from a TBM (Tunnel Boring Machine) tunnel and suggests methods for a comprehensive understanding on rockbursts. From the analysis of the field data of rockbursts, it was found that most rockbursts mainly occurred at the section between the tunnel face and the TBM operating room, and the rock bursting phenomena lasted up to 20 days after excavation in certain areas. The data also show that the bursting spots are located all around the tunnel surface including the face, the wall, and the roof, The maximum size of bursting spots is usually less than 100cm. This study also suggests new scale systems of brittleness and uniaxial compressive strength to evaluate the possible tendency for a rockburst. These systems are scaled based on the scale system of strain energy density. In addition, with these scale systems, this research shows that there are potentially higher tendencies for rockbursts in this specific tunnel. Moreover this research suggests that properties of rock and rock mass, RMR (Rock Mass Rating) value, tunneling method, excavating speed, and depth of tunnel have a strong correlation with rockbursts.