• Title/Summary/Keyword: TAT 1

Search Result 181, Processing Time 0.029 seconds

The penetration enhancement and the lipolystic effects of TAT-GKH, in both In vitro, Ex vivo, and In vivo.

  • Lim, J.M.;Chang, M.Y.;Park, S.G.;Kang, N.G.;Song, Y.S.;Lee, Y.H.;Yoo, Y.C.;Cho, W.G.;Han, S.G.;Kang, S.H.
    • Proceedings of the SCSK Conference
    • /
    • 2003.09b
    • /
    • pp.87-107
    • /
    • 2003
  • It was demonstrated that Transactivating transcriptional activator(TAT) protein from HIV-1 shown to enter cells when added to the surrounding media. TAT peptide chemically attached to various proteins was able to deliver these proteins to various cell and even in tissues in mice with high levels in heart and spleen. In this study, the tripeptide GKH(Glycine-Lysine-Histidine) derived from Parathyroid hormone (PTH), which was known as lipolytic peptide, is attached to 9-poly Lysine(TAT) to be used as a cosmetic ingredient for slimming products. When Glycerol release, expressed as extracellular glycerol concentration, is lipolysis index, TAT-GKH at $10^{-5}$mo1/L induces approximately 41.5% maximal lipolytic effects in epididymal adipocytes isolated from rats, compared with basal lipolysis. Epididymal adipose tissues of male rats is assessed ex vivo by microdialysis. Probes are perfused with Ringer solution in which increasing concentrations of TAT-GKH. The perfusion of TAT-GKH induces lipolytic effect. Penetration study showed that TAT-GKH efficiently elevates 36 times higher penetration into the excised hairless mice skin than GKH. in vivo study showed that TAT-GKH had a better effect upon the relative volume of eye bag after 28 days of application on twenty(+2) healthy female volunteers. It was identified that TAT-GKH increases penetration enhancement and lipolytic effects in both in vitro, ex vivo and in vivo.

  • PDF

Protective effects of Tat-DJ-1 protein against streptozotocin-induced diabetes in a mice model

  • Yeo, Hyeon Ji;Yeo, Eun Ji;Shin, Min Jea;Choi, Yeon Joo;Lee, Chi Hern;Kwon, Hyeok Yil;Kim, Dae Won;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • v.51 no.7
    • /
    • pp.362-367
    • /
    • 2018
  • A major feature of type 1 diabetes mellitus (T1DM) is hyperglycemia and dysfunction of pancreatic ${\beta}$-cells. In a previous study, we have shown that Tat-DJ-1 protein inhibits pancreatic RINm5F ${\beta}$-cell death caused by oxidative stress. In this study, we examined effects of Tat-DJ-1 protein on streptozotocin (STZ)-induced diabetic mice. Wild type (WT) Tat-DJ-1 protein transduced into pancreas where it markedly inhibited pancreatic ${\beta}$-cell destruction and regulated levels of serum parameters including insulin, alkaline phosphatase (ALP), and free fatty acid (FFA) secretion. In addition, transduced WT Tat-DJ-1 protein significantly inhibited the activation of $NF-{\kappa}B$ and MAPK (ERK and p38) expression as well as expression of COX-2 and iNOS in STZ exposed pancreas. In contrast, treatment with C106A mutant Tat-DJ-1 protein showed no protective effects. Collectively, our results indicate that WT Tat-DJ-1 protein can significantly ameliorate pancreatic tissues in STZ-induced diabetes in mice.

Enhanced Induction of T Cell Immunity Using Dendritic Cells Pulsed with HIV Tat and HCMV-pp65 Fusion Protein In Vitro

  • Park, Jung-Sun;Park, Soo-Young;Cho, Hyun-Il;Sohn, Hyun-Jung;Kim, Tai-Gyu
    • IMMUNE NETWORK
    • /
    • v.11 no.3
    • /
    • pp.182-189
    • /
    • 2011
  • Background: Cytotoxic T lymphocytes (CTLs) appear to play an important role in the control and prevention of human cytomegalovirus (HCMV) infection. The pp65 antigen is a structural protein, which has been defined as a potential target for effective immunity against HCMV infection. Incorporation of an 11 amino acid region of the HIV TAT protein transduction domain (Tat) into protein facilitates rapid, efficient entry into cells. Methods: To establish a strategy for the generation of HCMV-specific CTLs in vitro, recombinant truncated N- and C-terminal pp65 protein (pp65 N&C) and N- and C-terminal pp65 protein fused with Tat (Tat/pp65 N&C) was produced in E.coli system. Peripheral blood mononuclear cells were stimulated with dendritic cells (DCs) pulsed with pp65 N&C or Tat/pp65 N&C protein and immune responses induced was examined using IFN-${\gamma}$ ELISPOT assay, cytotoxicity assay and tetramer staining. Results: DCs pulsed with Tat/pp65N&C protein could induce higher T-cell responses in vitro compared with pp65N&C. Moreover, the DCs pulsed with Tat/pp65 N&C could stimulate both of $CD8^+$ and $CD4^+$ T-cell responses. The T cells induced by DCs pulsed with Tat/pp65 N&C showed higher cytotoxicity than that of pp65-pulsed DCs against autologous lymphoblastoid B-cell line (LCL) expressing the HCMV-pp65 antigen. Conclusion: Our results suggest that DCs pulsed with Tat/pp65 N&C protein effectively induced pp65-specific CTL in vitro. Tat fusion recombinant protein may be useful for the development of adoptive T-cell immunotherapy and DC-based vaccines.

Transduced Tat-DJ-1 protein inhibits cytokines-induced pancreatic RINm5F cell death

  • Jo, Hyo Sang;Yeo, Hyeon Ji;Cha, Hyun Ju;Kim, Sang Jin;Cho, Su Bin;Park, Jung Hwan;Lee, Chi Hern;Yeo, Eun Ji;Choi, Yeon Joo;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • v.49 no.5
    • /
    • pp.297-302
    • /
    • 2016
  • Loss of pancreatic β-cells by oxidative stress or cytokines is associated with diabetes mellitus (DM). DJ-1 is known to as a multifunctional protein, which plays an important role in cell survival. We prepared cell permeable wild type (WT) and mutant type (M26I) Tat-DJ-1 proteins to investigate the effects of DJ-1 against combined cytokines (IL-1β, IFN-γ and TNF-α)-induced RINm5F cell death. Both Tat-DJ-1 proteins were transduced into RINm5F cells. WT Tat-DJ-1 proteins significantly protected against cell death from cytokines by reducing intracellular toxicities. Also, WT Tat-DJ-1 proteins markedly regulated cytokines-induced pro- and anti-apoptosis proteins. However, M26I Tat-DJ-1 protein showed relatively low protective effects, as compared to WT Tat-DJ-1 protein. Our experiments demonstrated that WT Tat-DJ-1 protein protects against cytokine-induced RINm5F cell death by suppressing intracellular toxicities and regulating apoptosisrelated protein expression. Thus, WT Tat-DJ-1 protein could potentially serve as a therapeutic agent for DM and cytokine related diseases.

Reabsorption of Neutral Amino Acids Mediated by Amino Acid Transporter LAT2 and TAT1 in The Basolateral Membrane of Proximal Tubule

  • Park Sun Young;Kim Jong-Keun;Kim In Jin;Choi Bong Kyu;Jung Kyu Yong;Lee Seoul;Park Kyung Jin;Chairoungdua Arthit;Kanai Yoshikatsu;Endou Hitoshi;Kim Do Kyung
    • Archives of Pharmacal Research
    • /
    • v.28 no.4
    • /
    • pp.421-432
    • /
    • 2005
  • In order to understand the renal reabsorption mechanism of neutral amino acids via amino acid transporters, we have isolated human L-type amino acid transporter 2 (hLAT2) and human T-type amino acid transporter 1 (hTAT1) in human, then, we have examined and compared the gene structures, the functional characterizations and the localization in human kidney. Northern blot analysis showed that hLAT2 mRNA was expressed at high levels in the heart, brain, placenta, kidney, spleen, prostate, testis, ovary, lymph node and the fetal liver. The hTAT1 mRNA was detected at high levels in the heart, placenta, liver, skeletal muscle, kidney, pancreas, spleen, thymus and prostate. Immunohistochemical analysis on the human kidney revealed that the hLAT2 and hTAT1 proteins coexist in the basolateral membrane of the renal proximal tubules. The hLAT2 transports all neutral amino acids and hTAT1 transports aromatic amino acids. The basolateral location of the hLAT2 and hTAT1 proteins in the renal proximal tubule as well as the amino acid transport activity of hLAT2 and hTAT1 suggests that these transporters contribute to the renal reabsorption of neutral and aromatic amino acids in the basolateral domain of epithelial proximal tubule cells, respectively. Therefore, LAT2 and TAT1 play essential roles in the reabsorption of neutral amino acids from the epithelial cells to the blood stream in the kidney. Because LAT2 and TAT1 are essential to the efficient absorption of neutral amino acids from the kidney, their defects might be involved in the pathogenesis of disorders caused by a disruption in amino acid absorption such as blue diaper syndrome.

Transduced Tat-CIAPIN1 reduces the inflammatory response on LPS- and TPA-induced damages

  • Yeo, Hyeon Ji;Shin, Min Jea;You, Ji Ho;Kim, Jeong Su;Kim, Min Young;Kim, Dae Won;Kim, Duk-Soo;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • v.52 no.12
    • /
    • pp.695-699
    • /
    • 2019
  • Cytokine-induced apoptosis inhibitor 1 (CIAPIN1), known as an anti-apoptotic and signal-transduction protein, plays a pivotal role in a variety of biological processes. However, the role of CIAPIN1 in inflammation is unclear. We investigated the protective effects of CIAPIN1 in lipopolysaccharide (LPS)-exposed Raw 264.7 cells and against inflammatory damage induced by 12-O-tetradecanoylphorbol-13-acetate (TPA) in a mouse model using cell-permeable Tat-CIAPIN1. Transduced Tat-CIAPIN1 significantly reduced ROS production and DNA fragmentation in LPS-exposed Raw 264.7 cells. Also, Tat-CIAPIN1 inhibited MAPKs and NF-κB activation, reduced the expression of Bax, and cleaved caspase-3, COX-2, iNOS, IL-6, and TNF-α in LPS-exposed cells. In a TPA-induced animal model, transduced Tat-CIAPIN1 drastically decreased inflammation damage and inhibited COX-2, iNOS, IL-6, and TNF-α expression. Therefore, these findings suggest that Tat-CIAPIN1 might lead to a new strategy for the treatment of inflammatory skin disorders.

Tat-ATOX1 inhibits inflammatory responses via regulation of MAPK and NF-κB pathways

  • Kim, Dae Won;Shin, Min Jea;Choi, Yeon Joo;Kwon, Hyun Jung;Lee, Sung Ho;Lee, Sunghou;Park, Jinseu;Han, Kyu Hyung;Eum, Won Sik;Choi, Soo Young
    • BMB Reports
    • /
    • v.51 no.12
    • /
    • pp.654-659
    • /
    • 2018
  • Antioxidant 1 (ATOX1) protein has been reported to exhibit various protective functions, including antioxidant and chaperone. However, the effects of ATOX1 on the inflammatory response has not been fully elucidated. Thus, we prepared cell permeable Tat-ATOX1 and studied the effects on lipopolysaccharide (LPS)- and 12-O-tetradecanoyl phorbol-13-acetate (TPA)-induced inflammation. Experimental results showed that transduced Tat-ATOX1 protein significantly suppressed LPS-induced intracellular reactive oxygen species (ROS). Also, Tat-ATOX1 protein markedly inhibited LPS- and TPA-induced inflammatory responses by decreasing cyclooxygenase-2 (COX-2) and inducible nitric oxide synthase (iNOS) and further inhibited phosphorylation of mitogen activated protein kinases (MAPKs; JNK, ERK and p38) and the nuclear factor-kappaB ($NF-{\kappa}B$) signaling pathway. These results indicate that the Tat-ATOX1 protein has a pivotal role in inflammation via inhibition of inflammatory responses, suggesting Tat-ATOX1 protein may offer a therapeutic strategy for inflammation.

Casein kinase 2 promotes the TGF-β-induced activation of α-tubulin acetyltransferase 1 in fibroblasts cultured on a soft matrix

  • You, Eunae;Jeong, Jangho;Lee, Jieun;Keum, Seula;Hwang, Ye Eun;Choi, Jee-Hye;Rhee, Sangmyung
    • BMB Reports
    • /
    • v.55 no.4
    • /
    • pp.192-197
    • /
    • 2022
  • Cell signals for growth factors depend on the mechanical properties of the extracellular matrix (ECM) surrounding the cells. Microtubule acetylation is involved in the transforming growth factor (TGF)-β-induced myofibroblast differentiation in the soft ECM. However, the mechanism of activation of α-tubulin acetyltransferase 1 (α-TAT1), a major α-tubulin acetyltransferase, in the soft ECM is not well defined. Here, we found that casein kinase 2 (CK2) is required for the TGF-β-induced activation of α-TAT1 that promotes microtubule acetylation in the soft matrix. Genetic mutation and pharmacological inhibition of CK2 catalytic activity specifically reduced microtubule acetylation in the cells cultured on a soft matrix rather than those cultured on a stiff matrix. Immunoprecipitation analysis showed that CK2α, a catalytic subunit of CK2, directly bound to the C-terminal domain of α-TAT1, and this interaction was more prominent in the cells cultured on the soft matrix. Moreover, the substitution of alanine with serine, the 236th amino acid located at the C-terminus, which contains the CK2-binding site of α-TAT1, significantly abrogated the TGF-β-induced microtubule acetylation in the soft matrix, indicating that the successful binding of CK2 and the C-terminus of α-TAT1 led to the phosphorylation of serine at the 236th position of amino acids in α-TAT1 and regulation of its catalytic activity. Taken together, our findings provide novel insights into the molecular mechanisms underlying the TGF-β-induced activation of α-TAT1 in a soft matrix.

Transduction of Tat-Superoxide Dismutase into Insulin-producing MIN6N Cells Reduces Streptozotocin-induced Cytotoxicity

  • Choung, In-Soon;Eum, Won-Sik;Li, Ming-Zhen;Sin, Gye-Suk;Kang, Jung-Hoon;Park, Jin-Seu;Choi, Soo-Young;Kwon, Hyeok-Yil
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.7 no.3
    • /
    • pp.163-168
    • /
    • 2003
  • The reactive oxygen species (ROS) are considered to be an important mediator in pancreatic ${\beta}$ cell destruction, thereby triggering the development of insulin-dependent diabetes mellitus. In the present study, HIV-1 Tat-mediated transduction of Cu,Zn-superoxide dismutase (SOD) was investigated to evaluate its protective potential against streptozotocin (STZ)-induced cytotoxicity in insulin-producing MIN6N cells. Tat-SOD fusion protein was successfully delivered into MIN6N cells in a dose-dependent manner and the transduced fusion protein was enzymatically active for 48 h. The STZ induced-cell destruction, superoxide anion radical production, and DNA fragmentation of MIN6N cells were significantly decreased in the cells pretreated with Tat-SOD for 1 h. Furthermore, the transduction of Tat-SOD increased Bcl-2 and heat shock protein 70 (hsp70) expressions in cells exposed to STZ, which might be partly responsible for the effect of Tat-SOD. These results suggest that an increased of free radical scavenging activity by transduction of Tat-SOD enhanced the tolerance of the cell against oxidative stress in STZ-treated MIN6N cells. Therefore, this Tat-SOD transduction technique may provide a new strategy to protect the pancreatic ${\beta}$ cell destruction in ROS-mediated diabetes.

Comparative Studies on Serological Tests for Actinobacillus pleuropneumoniae Infection in Swine (돼지에서 Actinobacillus pleuropneumoniae의 혈청학적 진단법에 대한 비교연구)

  • 심항섭;우종태;조중현;전무형
    • Korean Journal of Veterinary Service
    • /
    • v.17 no.2
    • /
    • pp.95-113
    • /
    • 1994
  • To establish an effective diagnostic measure for detection of the antibodies against Actinobacillus pleuropneumoniae, the methods for tube agglutination test (TAT), plate agglutination test (PAT), micro-agglutination test(MAT) and agar-gel immunodiffusion test(ID) were improved and standarized, and the comparative studies were carried out. The results obtained through the experiments were summarized as follows. 1. The rabbit hyperimmune sera to reference serotypes 1 to 6 were cross-tested with TAT, PAT, MAT and ID. In the homologous systems, the range of antibody titers in TAT was 80 to 640, showing the cross-reaction in serotypes 3, 4, 5 and 6. The range of antibody titers in PAT was 4 to 64, showing the cross-reaction in serotypes 3, 4, 5 and 6. In ID, the range of antigen titers was 8 to 32, and cross-reaction was observed in serotype 5. 2. The optimal concentration of antigen in PAT and MAT were 100mg /ml and 1.25mg /ml respectively. The most sensitive reaction in MAT was observed in 52$^{\circ}C$ for 18hrs. 3. In ID, the most promising antigen and the buffer for agar-gel were EDTA-treated antigen and 0.05M tris buffer (pH 7.2), respectively. 4. By the tests for 200 swine sera, it was found that the frequency of positive reaction were 203 in TAT, 240 in PAT and 163 in ID. 5. When compared the titers of TAT with those of MAT for 200 swine sera, MAT showed the higher titer than TAT being increased by relative correlation. Int was found that the titer for positive readings were 20 in TAT and 40 in MAT. 6. when compared the results of ID with those of TAT for 200 swine sera, all sera with TAT titer under 10 were negative in ID. Of the sera with TAT titer 20 and 40, 55.1% nd 91.8% were positive in ID, respectively. All sera with TAT titer above 80 were positive in ID. In comparison of ID and MAT, all sera with MAT titer under 20 were negative in ID. Of the sera with MAT titer 40 and 80, 24.7% and 93.9% were positive in ID, respectively. All sera with MAT titer over 160 showed positive in ID. 7. In conclusion, the established MAT showed high sensitivity but low specificity, wherease ID revealed low sensitivity but high specificity.

  • PDF