Casein kinase 2 promotes the TGF-β-induced activation of α-tubulin acetyltransferase 1 in fibroblasts cultured on a soft matrix |
You, Eunae
(Department of Life Science, Chung-Ang University)
Jeong, Jangho (Department of Life Science, Chung-Ang University) Lee, Jieun (Department of Life Science, Chung-Ang University) Keum, Seula (Department of Life Science, Chung-Ang University) Hwang, Ye Eun (Department of Life Science, Chung-Ang University) Choi, Jee-Hye (Department of Life Science, Chung-Ang University) Rhee, Sangmyung (Department of Life Science, Chung-Ang University) |
1 | Markwell SM, Ammer AG, Interval ET et al (2019) Cortactin phosphorylation by casein kinase 2 regulates actin-related protein 2/3 complex activity, invadopodia function, and tumor cell invasion. Mol Cancer Res 17, 987-1001 DOI |
2 | Bouchet BP and Akhmanova A (2017) Microtubules in 3D cell motility. J Cell Sci 130, 39-50 DOI |
3 | Cartelli D, Ronchi C, Maggioni MG, Rodighiero S, Giavini E and Cappelletti G (2010) Microtubule dysfunction precedes transport impairment and mitochondria damage in MPP+ -induced neurodegeneration. J Neurochem 115, 247-258 DOI |
4 | Boggs AE, Vitolo MI, Whipple RA et al (2015) Alpha-tubulin acetylation elevated in metastatic and basal-like breast cancer cells promotes microtentacle formation, adhesion, and invasive migration. Cancer Res 75, 203-215 DOI |
5 | Westermann S and Weber K (2003) Post-translational modifications regulate microtubule function. Nat Rev Mol Cell Biol 4, 938-947 DOI |
6 | Friedrich M, Pohin M and Powrie F (2019) Cytokine networks in the pathophysiology of inflammatory bowel disease. Immunity 50, 992-1006 DOI |
7 | Janke C and Montagnac G (2017) Causes and consequences of microtubule acetylation. Curr Biol 27, R1287-R1292 DOI |
8 | Balabanian L, Berger CL and Hendricks AG (2017) Acetylated microtubules are preferentially bundled leading to enhanced kinesin-1 motility. Biophys J 113, 1551-1560 DOI |
9 | Kwon A, Lee GB, Park T et al (2020) Potent small-molecule inhibitors targeting acetylated microtubules as anticancer agents against triple-negative breast cancer. Biomedicines 8, 338 DOI |
10 | Garcin C and Straube A (2019) Microtubules in cell migration. Essays Biochem 63, 509-520 DOI |
11 | Taschner M, Vetter M and Lorentzen E (2012) Atomic resolution structure of human alpha-tubulin acetyltransferase bound to acetyl-CoA. Proc Natl Acad Sci U S A 109, 19649-19654 DOI |
12 | Shah N, Kumar S, Zaman N et al (2018) TAK1 activation of alpha-TAT1 and microtubule hyperacetylation control AKT signaling and cell growth. Nat Commun 9, 1696 DOI |
13 | Lim AC, Tiu SY, Li Q and Qi RZ (2004) Direct regulation of microtubule dynamics by protein kinase CK2. J Biol Chem 279, 4433-4439 DOI |
14 | Watabe M and Nakaki T (2011) Protein kinase CK2 regulates the formation and clearance of aggresomes in response to stress. J Cell Sci 124, 1519-1532 DOI |
15 | Xavier CP, Rastetter RH, Blomacher M et al (2012) Phosphorylation of CRN2 by CK2 regulates F-actin and Arp2/3 interaction and inhibits cell migration. Sci Rep 2, 241 DOI |
16 | You E, Huh YH, Kwon A et al (2017) SPIN90 depletion and microtubule acetylation mediate stromal fibroblast activation in breast cancer progression. Cancer Res 77, 4710-4722 DOI |
17 | Al-Bassam J and Corbett KD (2012) Alpha-tubulin acetylation from the inside out. Proc Natl Acad Sci U S A 109, 19515-19516 DOI |
18 | Mackeh R, Lorin S, Ratier A et al (2014) Reactive oxygen species, AMP-activated protein kinase, and the transcription cofactor p300 regulate alpha-tubulin acetyltransferase-1 (alphaTAT-1/MEC-17)-dependent microtubule hyperacetylation during cell stress. J Biol Chem 289, 11816-11828 DOI |
19 | Ko P, Choi JH, Song S et al (2021) Microtubule acetylation controls MDA-MB-231 breast cancer cell invasion through the modulation of endoplasmic reticulum stress. Int J Mol Sci 22, 6018 DOI |
20 | Cappelletti G, Calogero AM and Rolando C (2021) Microtubule acetylation: a reading key to neural physiology and degeneration. Neurosci Lett 755, 135900 DOI |
21 | Mao CX, Wen X, Jin S and Zhang YQ (2017) Increased acetylation of microtubules rescues human tau-induced microtubule defects and neuromuscular junction abnormalities in Drosophila. Dis Model Mech 10, 1245-1252 DOI |
22 | Rhee S, Jiang H, Ho CH and Grinnell F (2007) Microtubule function in fibroblast spreading is modulated according to the tension state of cell-matrix interactions. Proc Natl Acad Sci U S A 104, 5425-5430 DOI |
23 | Coombes C, Yamamoto A, McClellan M et al (2016) Mechanism of microtubule lumen entry for the alpha-tubulin acetyltransferase enzyme alphaTAT1. Proc Natl Acad Sci U S A 113, 7176-7184 |
24 | Kalebic N, Martinez C, Perlas E et al (2013) Tubulin acetyltransferase alphaTAT1 destabilizes microtubules independently of its acetylation activity. Mol Cell Biol 33, 1114-1123 DOI |
25 | Reed NA, Cai D, Blasius TL et al (2006) Microtubule acetylation promotes kinesin-1 binding and transport. Curr Biol 16, 2166-2172 DOI |
26 | Wang B, Rao YH, Inoue M et al (2014) Microtubule acetylation amplifies p38 kinase signalling and anti-inflammatory IL-10 production. Nat Commun 5, 3479 DOI |
27 | Graham KC and Litchfield DW (2000) The regulatory beta subunit of protein kinase CK2 mediates formation of tetrameric CK2 complexes. J Biol Chem 275, 5003-5010 DOI |
28 | Borgo C, D'Amore C, Sarno S, Salvi M and Ruzzene M (2021) Protein kinase CK2: a potential therapeutic target for diverse human diseases. Signal Transduct Target Ther 6, 183 DOI |
29 | You E, Ko P, Jeong J et al (2020) Dynein-mediated nuclear translocation of yes-associated protein through microtubule acetylation controls fibroblast activation. Cell Mol Life Sci 77, 4143-4161 DOI |