DOI QR코드

DOI QR Code

Protective effects of Tat-DJ-1 protein against streptozotocin-induced diabetes in a mice model

  • Yeo, Hyeon Ji (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Yeo, Eun Ji (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Shin, Min Jea (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Choi, Yeon Joo (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Lee, Chi Hern (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Kwon, Hyeok Yil (Department of Physiology, College of Medicine, Hallym University) ;
  • Kim, Dae Won (Department of Biochemistry and Molecular Biology, Research Institute of Oral Sciences, College of Dentistry, Gangneung-Wonju National University) ;
  • Eum, Won Sik (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University) ;
  • Choi, Soo Young (Department of Biomedical Science and Research Institute of Bioscience and Biotechnology, Hallym University)
  • Received : 2018.05.02
  • Accepted : 2018.06.01
  • Published : 2018.07.31

Abstract

A major feature of type 1 diabetes mellitus (T1DM) is hyperglycemia and dysfunction of pancreatic ${\beta}$-cells. In a previous study, we have shown that Tat-DJ-1 protein inhibits pancreatic RINm5F ${\beta}$-cell death caused by oxidative stress. In this study, we examined effects of Tat-DJ-1 protein on streptozotocin (STZ)-induced diabetic mice. Wild type (WT) Tat-DJ-1 protein transduced into pancreas where it markedly inhibited pancreatic ${\beta}$-cell destruction and regulated levels of serum parameters including insulin, alkaline phosphatase (ALP), and free fatty acid (FFA) secretion. In addition, transduced WT Tat-DJ-1 protein significantly inhibited the activation of $NF-{\kappa}B$ and MAPK (ERK and p38) expression as well as expression of COX-2 and iNOS in STZ exposed pancreas. In contrast, treatment with C106A mutant Tat-DJ-1 protein showed no protective effects. Collectively, our results indicate that WT Tat-DJ-1 protein can significantly ameliorate pancreatic tissues in STZ-induced diabetes in mice.

Keywords

References

  1. Lukic ML, Pejnovic N and Lukic A (2014) New insight into early events in type 1 diabetes: role for islet stem cell exosomes. Diabetes 63, 835-837 https://doi.org/10.2337/db13-1786
  2. Daneman D (2006) Type 1 diabetes. Lancet 367, 847-858 https://doi.org/10.1016/S0140-6736(06)68341-4
  3. Welters A and Lammert E (2014) Diabetes Mellitus. In: Lammert E, Zeeb M (eds) Metabolism of human diseases: organ physiology and pathophysiology. Springer, Vienna, 163-173
  4. Rui L (2014) Energy metabolism in the liver. Compr Physiol 4, 177-197
  5. Fiorentino TV, Prioletta A, Zuo P and Folli F (2013) Hyperglycemia-induced oxidative stress and its role in diabetes mellitus related cardiovascular diseases. Curr Pharm Des 19, 5695-5703 https://doi.org/10.2174/1381612811319320005
  6. Esposito K, Marfella R and Giugliano D (2003) Stress hyperglycemia, inflammation, and cardiovascular events. Diabetes Care 26, 1650-1651
  7. Hayashi K, Kojima R and Ito M (2006) Strain differences in the diabetogenic activity of streptozotocin in mice. Biol Pharm Bull 29, 1110-1119 https://doi.org/10.1248/bpb.29.1110
  8. Mikio I, Yoichi K, Akiko N, Koji H and Atsuhiko N (2001) Characterization of low dose streptozotocin-induced progressive diabetes in mice. Environ Toxicol Pharmacol 9, 71-78 https://doi.org/10.1016/S1382-6689(00)00064-8
  9. Nagakubo D, Taira T, Kitaura H et al (1997) DJ-1, a novel oncogene which transforms mouse NIH3T3 cells in cooperation with ras. Biochem Biophys Res Commun 231, 509-513 https://doi.org/10.1006/bbrc.1997.6132
  10. Wilson MA (2011) The role of cysteine oxidation in DJ-1 function and dysfunction. Antioxid Redox Signal 15, 111-122 https://doi.org/10.1089/ars.2010.3481
  11. Ariga H, Takahashi-Niki K, Kato I, Maita H, Niki T and Iguchi-Ariga SM (2013) Neuroprotective function of DJ-1 in Parkinson's disease. Oxidative Med Cell Longev 2013, 683920
  12. Bonifati V, Rizzu P, van Baren MJ et al (2003) Mutations in the DJ-1 gene associated with autosomal recessive early-onset parkinsonism. Science 299, 256-259 https://doi.org/10.1126/science.1077209
  13. Jain D, Jain R, Eberhard D et al (2012) Age- and diet-dependent requirement of DJ-1 for glucose homeostasis in mice with implications for human type 2 diabetes. J Mol Cell Biol 4, 221-230 https://doi.org/10.1093/jmcb/mjs025
  14. Yu HH, Xu Q, Chen HP et al (2013) Stable overexpression of DJ-1 protects H9c2 cells against oxidative stress under a hypoxia condition. Cell Biochem Funct 31, 643-651 https://doi.org/10.1002/cbf.2949
  15. Inden M, Taira T, Kitamura Y et al (2006) PARK7 DJ-1 protects against degeneration of nigral dopaminergic neurons in Parkinson's disease rat model. Neurobiol Dis 24, 144-158 https://doi.org/10.1016/j.nbd.2006.06.004
  16. Kim RH, Smith PD, Aleyashin H et al (2005) Hypersensitive of DJ-1-deficient mice to 1-methtyl-4-phenyl- 1,2,3,6-tetrahydropyrindine (MPTP) and oxidative stress. Proc Natl Acad Sci U S A 102, 5215-5220 https://doi.org/10.1073/pnas.0501282102
  17. Wadia JS and Dowdy SF (2002) Protein transduction technology. Curr Opin Biotechnol 13, 52-56 https://doi.org/10.1016/S0958-1669(02)00284-7
  18. van den Berg A and Dowdy SF (2011) Protein transduction domain delivery of therapeutic macromolecules. Curr Opin Biotechnol 22, 888-893 https://doi.org/10.1016/j.copbio.2011.03.008
  19. Kubo E, Fatma N, Akagi Y, Beier DR, Singh SP and Singh DP (2008) TAT-mediated PRDX6 protein transduction protects against eye lens epithelial cell death and delays lens opacity. Am J Physiol Cell Physiol 294, C842-C855 https://doi.org/10.1152/ajpcell.00540.2007
  20. Embury J, Klein D, Pileggi A et al (2001) Proteins linked to a protein transduction domain efficiently transduce pancreatic islets. Diabetes 50, 1706-1713 https://doi.org/10.2337/diabetes.50.8.1706
  21. Jo HS, Eum WS, Park EY et al (2017) Effects of PEP-1-FK506BP on cyst formation in polycystic kidney disease. BMB Rep 50, 460-465 https://doi.org/10.5483/BMBRep.2017.50.9.090
  22. Jo HS, Yeo HJ, Cha JH et al (2016) Transduced Tat-DJ-1 protein inhibits cytokine-induced pancreatic RINm5F cell death. BMB Rep 49, 297-302 https://doi.org/10.5483/BMBRep.2016.49.5.058
  23. Jo HS, Cha HJ, Kim SJ et al (2016) Tat-DJ-1 inhibits oxidative stress-mediated RINm5F cell death through suppression of $NF-{\kappa}B$ and MAPK activation. Med Chem Res 25, 2589-2598 https://doi.org/10.1007/s00044-016-1698-4
  24. Jo HS, Yeo EJ, Shin MJ et al (2017) Tat-DJ-1 enhances cell survival by inhibition of oxidative stress, $NF-{\kappa}B$ and MAPK activation in HepG2 cells. Biotechnol Lett 39, 511-521 https://doi.org/10.1007/s10529-017-2286-5
  25. Kim MJ, Kim DW, Lee BY et al (2013) Transduced Tat-glyoxalase protein attenuates streptozotocin-induced diabetes in a mouse model. Biochem Biophys Res Commun 430, 294-300 https://doi.org/10.1016/j.bbrc.2012.10.134
  26. Szkudelski T (2001) The mechanisms of alloxan and streptozotocin action in ${\beta}$-cells of rat pancreas. Physiol Res 50, 536-546
  27. Jain D, Weber G, Eberhard D et al (2015) DJ-1 protects pancreatic beta cells from cytokine- and streptozotocinmediated cell death. PLoS One 10, e0138535 https://doi.org/10.1371/journal.pone.0138535
  28. Robertson RP (2009) Beta-cell deterioration during diabetes: what's in the gun? Trends Endocrinol Metab 20, 388-393 https://doi.org/10.1016/j.tem.2009.05.004
  29. Mota M, Banini BA, Cazanave SC and Sanyal AJ (2016) Molecular mechanism of lipotoxicity and glucotoxicity in nonalcoholic fatty liver disease. Metabolism 65, 1049-1061 https://doi.org/10.1016/j.metabol.2016.02.014
  30. Navarro C, Montilla P, Martin A, Jimenez J and Utrilla P (1993) Free radicals scavenger and antihepatotoxic activity of Rosmarinus. Planta Med 59, 312-314 https://doi.org/10.1055/s-2006-959688
  31. Singh R, Bhardwaj P and Sharma P (2013) Antioxidant and toxicological evaluation of Cassia sopherain streptozotocin-induced diabetic Wister rats. Pharmacognosy Res 5, 225-232 https://doi.org/10.4103/0974-8490.118767
  32. Ren H, Fu K, Mu C, Li B, Wang D and Wang G (2010) DJ-1, a cancer and Parkinson's disease associated protein, regulates autophagy through JNK pathway in cancer cells. Cancer Lett 297, 101-108 https://doi.org/10.1016/j.canlet.2010.05.001
  33. Gu L, Cui T, Fan C et al (2009) Involvement of ERK1/2 signaling pathway in DJ-1-induced neuroprotection against oxidative stress. Biochem Biophys Res Commun 383, 469-474 https://doi.org/10.1016/j.bbrc.2009.04.037
  34. Im JY, Lee KW, Junn E and Mouradian MM (2010) DJ-1 protects against oxidative damage by regulating the thioredoxin/ASK1 complex. Neurosci Res 67, 203-208 https://doi.org/10.1016/j.neures.2010.04.002
  35. Jaramillo-Gomez J, Nino A, Arboleda H and Arboleda G (2015) Overexpression of DJ-1 protects against C2-ceramide-induced neuronal death through activation of the PI3K/AKT pathway and inhibition of autophagy. Neurosci Lett 603, 71-76 https://doi.org/10.1016/j.neulet.2015.07.032
  36. Sakai N, Wada T, Furuichi K et al (2002) p38 MAPK phosphorylation and NF-kappa B activation in human crescentic glomerulonephritis. Nephrol Dial Transplant 17, 998-1004 https://doi.org/10.1093/ndt/17.6.998
  37. Shi Y, Wan X, Shao N, Ye R, Zhang N and Zhang Y (2016) Protective and anti-angiopathy effects of ginsenoside Re against diabetes mellitus via the activation of p38MAPK, ERK1/2 and JNK signaling. Mol Med Rep 14, 4849-4856 https://doi.org/10.3892/mmr.2016.5821
  38. Zhang Y, Mei H, Shan W et al (2016) Lentinan protects pancreatic ${\beta}$ cells from STZ-induced damage. J Cell Mol Med 20, 1803-1812 https://doi.org/10.1111/jcmm.12865
  39. Sakai N, Wada T, Furuichi K et al (2005) Involvement of extracellular signal-regulated kinase and p38 in human diabetic nephropathy. Am J Kidney Dis 45, 54-65 https://doi.org/10.1053/j.ajkd.2004.08.039
  40. Weih F, Carrasco D, Durham SK et al (1995) Multiorgan inflammation and hematopoietic abnormalities in mice with a targeted disruption of RelB, a member of the $NF-{\beta}B$/Rel family. Cell 80, 331-340 https://doi.org/10.1016/0092-8674(95)90416-6
  41. Mollah ZH, Pai S, Moore C et al (2008) Abnormal NF-kappa B function characterizes human type 1 diabetes dendritic cells and monocytes. J Immunol 180, 3166-3175 https://doi.org/10.4049/jimmunol.180.5.3166
  42. Lundh M, Scully SS, Mandrup-Poulsen T and Wagner BK (2013) Small-molecule inhibition of inflammatory beta cell death. Diabetes Obes Metab 15, 176-184 https://doi.org/10.1111/dom.12158
  43. Donath MY and Shoelson SE (2011) Type 2 diabetes as an inflammatory disease. Nat Rev Immunol 11, 98-107 https://doi.org/10.1038/nri2925
  44. Rabinovitch A and Suarez-Pinzon WL (1998) Cytokines and their roles in pancreatic islet beta-cell destruction and insulin-dependent diabetes mellitus. Biochem Pharmacol 55, 1139-1149 https://doi.org/10.1016/S0006-2952(97)00492-9
  45. Kellogg AP, Cheng HT and Pop-Busui R (2008) Cyclooxygenase-2 pathway as a potential therapeutic target in diabetic peripheral neuropathy. Curr Drug Targets 9, 68-76 https://doi.org/10.2174/138945008783431691
  46. Bujalska-Zadrozny M, de Corde A and Pawlik K (2015) Influence of nitric oxide synthase or cyclooxygenase inhibitors on cannabinosids activity in streptozotocininduced neuropathy. Pharmacol Rep 67, 209-216 https://doi.org/10.1016/j.pharep.2014.08.023
  47. Bujalska M, Tatarkiewicz J, de Corde A and Gumulka SW (2008) Effects of cyclooxygenase and nitric oxide synthase inhibitors on streptozotocin-induced hyperalgesia in rats. Pharmacol 81, 151-157 https://doi.org/10.1159/000110787
  48. Ahn EH, Kim DW, Shin MJ et al (2016) Tat-ATOX1 inhibits streptozotocin-induced cell death in pancreatic RINm5F cells and attenuates diabetes in a mouse model. Int J Mol Med 38, 217-224 https://doi.org/10.3892/ijmm.2016.2599
  49. Yang SJ, Kim J, Lee SE, Ahn JY, Choi SY and Cho SW (2017) Anti-inflammatory and anti-oxidative effects of 3-(naphthalen-2-yl(propoxy)methyl)azetidine hydrochloride on ${\beta}$-amyloid-induced microglial activation. BMB Rep 50, 634-639 https://doi.org/10.5483/BMBRep.2017.50.12.189
  50. An SY, Youn GS, Kim HJ, Choi SY and Park J (2017) Celastrol suppresses expression of adhesion molecules and chemokines by inhibiting JNK-STAT1/$NF-{\kappa}B$ activation in poly(I:C)-stimulated astrocytes. BMB Rep 50, 25-30 https://doi.org/10.5483/BMBRep.2017.50.1.114