• Title/Summary/Keyword: TANK 모형

Search Result 394, Processing Time 0.027 seconds

쌍끌이 중층트롤어법의 연구 ( 1 ) - 모형어구의 망구형상에 관하여 - ( A Study on the Pair Midwater Trawling ( 1 ) - Mouth Performance of the Model Net - )

  • 이병기
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.31 no.1
    • /
    • pp.29-44
    • /
    • 1995
  • A model experiment on the pair midwater trawl net applicable to 800 PS class Korean pair bottom trawlers was carried out in the special-prepared experimental thank. the tank was prepared as a reverse trapezoid shape in its vertical section by digging out flat soil. The dimension of the tank showed the 9.6 W$\times$43.0 L(m) of the upper fringe and the 4.8 W$\times$38.0 L(m) of the bottom with 3.0m in depth. The depth of water was maintained 2.7m during experiment. The model net was prepared based on the Tauti's similarity law of fishing gear in 1/30 scale considering the dimension of the experimental tank. Mouth performance of the model net during towing were determined by the photographs taken in front of the net mouth with the combinations of towing velocity, warp length and distance between paired boats. The results obtained can be summarized as follows: 1. Vertical opening of the model nets A and B was varied in the range of 0.18~0.88 m and 0.21~0.78 m (which can be converted into 5.4~26.4m and 6.3~23.4 m in the full-scale net) respectively, and was varied predominantly by towing speed. Vertical opening (H which is appendixed m for the model net. f for the full-scale net. A and B for the types of the model net) can be expressed as the function of towing velocity$V_t$as in the model net $V_t$ : m/ sec)$H_{mA}$=1.67$e^{-1.65V_t}$ $H_{mB}$=1.15$e^{-1.13V_t}$, in the full-scale net ($V_t$ : k't) $H_{fA}$=50.27$e^-0.37V_t$ $H_{fB}$=34.46$e^{-0.26Vt}$. 2. Horizontal opening of the model nets An and b was varied in the range of 1.03~1.54m and 1.04~1.55 m (which can be converted into 30.9~46.2 m and 31.2~46.5m in the full-scale net) respectively, and was varied predominantly by distance between paired boats. Horizontal opening (W, appendixes are as same as the former) an be expressed as the function of distance between paired boats $D_b$as in the model net $W_{mA}$=0.69+0.09$D_b$ $W{mB}$=0.73+0.09$D_b$, in the full-scale net $W_{fA}$=20.81+0.09$D_b$ $W_{fB}$=22.11+0.09$D_b$ 3. Net opening area of the model net A and B was varied in the range of 0.28~1.04 $m^2$ and 0.33~0.94$m^2$(which can be converted into 252~936$m^2$ and 297~846$m^2$ in the full-scale net) respectively, and was varied predominantly by towing velocity. Net opening area ($S$, appendixes are as same as the former) van be expressed as the function of towing velocity$V_t$ as in the model net $v_t$ : m/sec) $S_{Ma}$=2.01$e^{-1.54V_T}$ $S_{mA}$=1.40$e^{-1.65V_t}$, in the full-scale net ($V_t$ : k't) $S_{fA}$=1.807$e^-0.35V_t$ $S_{fA}$=1.265$e^{-0.24V_t}$. 4. Filtering volume of the model nets A and B was varied in the range of 0.32~0.55 $m^3$ and 0.37~0.55$m^3$(which can be converted into 8.640~14.850 $m^3$ and 9.990~14.850$m3$in the full~scale net) respectively, and was predominantly varied by towing speed. filtering volume of the model net-A showed the maximum at the towing speed 0.69 m/sec(3 k't in the full-scale net), compared with that of the model net B showed at 0.92 m/sec(4 k't in the full-scale net).

  • PDF

Studies on the Development of the Fishing System of Set Net in the Coast of Jeju Island - I. Comparative of Fishing Efficiency of Rectangular Set Net and Pound Net by the Model Net - (제주도 연안 정치망 조업시스템 개발에 관한 연구 - I. 모형어구에 의한 각망과 낙망의 어획성능 비교 -)

  • 김종범;김석종
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.37 no.3
    • /
    • pp.223-231
    • /
    • 2001
  • For the purpose of providing the basic data on the improved fishing gear and the man power saving, which contribute to enhance fishing efficiency of set net in the coast of Jeju Island, this study executed the test of fish tank by reducing these actual nets by 1/30 and using the manufactured model nets, and observed and interpreted the behaviors of entering and escaping of the schools of mackerel Scomber japonicus, horse mackerel Trachurus japonicus and rabbit fish Siganus fuscescens. Thereby the result is as follows ; 1. After the elapsed time of 60 seconds, in case of rectangular set net, the ratio for entering by a school of fish marked 50% with mackerel, 18% with horse mackerel and 28% with rabbit fish, and in case of pound net, the ratio for entering net by a school of fish marked 70% with mackerel, 60% with horse mackerel and 30% with rabbit fish. 2. After the elapsed time of 60 seconds, in case of rectangular set net, the ratio for escaping by a school of fish marked 70% with mackerel, 40% with horse mackerel and 24% with rabbit fish, and in case of pound net, the ratio for escaping from net by a school of fish marked 0% with mackerel, 0% with horse mackerel and 3% with rabbit fish. 3. After the elapsed time of 60 seconds, in case of rectangular set net, the ratio for remaining by a school of fish marked 30% with mackerel, 60% with horse mackerel and 76% with rabbit fish, and in case of pound net, the ratio for remaining by a school of fish marked 100% with mackerel, 100% with horse mackerel and 97% with rabbit fish.

  • PDF

Behavior of Yellow Tail , Seriola quinqueradiata and File Fish , Navodon Modestus to the Model Set Net (모형정치망에 대한 방어 및 말쥐치의 행동)

  • Gwon, Hyeok-Sa;Lee, Byeong-Gi
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.26 no.3
    • /
    • pp.230-236
    • /
    • 1990
  • To examine the behavior of yellow tail Seriola quinqueradiata and of file fish Navodon modestus to set net, the 1/30 scale model net of the actual set net used in the east coast of Korea was made of netting and set in the indoor experimental tank(700cm W$\times$700cm L$\times$100cm D), of which the water depth was kept 70cm. Total length of yellow tail examined were 37~45cm and file fish were 18~21cm. The fishes were released as groups of 3 to 20 individuals. The number of fish entered into the pound net or the bag net, escaped from the net was counted every minute and accumulated for 10minutes to check the ratio entered and the ratio escaped. The result obtained can be summarized as follows: 1. In case of yellow tail, even though the ratio entered into the pound net was not so high, that into the bag net was comparatively high. Traces of the fish swimming were comparatively smooth and both entering into the pound net and escaping from it was easily done. 2. In case of file fish, even though the ratio entered into the pound net was higher than that of yellow tail, that into the bag net was lower than that into the pound net. Traces of the fish swimming were roundly meandered. Entering into the bag net was not so smoothly done, even though that into the playground was smoothly done. 3. Both yellow tail and file fish, the ratio escaped from the bag net was almost0 and that from the pound net was less than 10%.

  • PDF

An Analysis on the Optimal Level of the Maintenance Float Using Absorbing Markov Chain (흡수 마코프 체인을 활용한 적정 M/F 재고 수준에 관한 연구)

  • Kim, Yong;Yoon, Bong-Kyoo
    • Journal of the military operations research society of Korea
    • /
    • v.34 no.2
    • /
    • pp.163-174
    • /
    • 2008
  • The military is an organization where reliability and availability take much more importance than in any other organization. And, in line with a recent trend of putting emphasis on 'system readiness', not only functions but also availability of a weapon system has become one of achievement targets. In this regard, the military keeps spares for important facility and equipment, which is called as Maintenance Float (M/F), in order to enhance reliability and availability in case of an unforeseen event. The military has calculated yearly M/F requirements based on the number of equipment and utilization rate. However, this method of calculation has failed to meet the intended targets of reliability and availability due to lack of consideration on the characteristics of equipment malfunctions and maintenance unit's capability. In this research, we present an analysis model that can be used to determine an optimal M/F inventory level based on queuing and absorbed Markov chain theories. And, we applied the new analysis model to come out with an optimal volume of K-1 tank M/F for the OO division, which serves as counterattack military unit. In our view, this research is valuable because, while using more tractable methodology compared to previous research, we present a new analysis model that can describe decision making process on M/F level more satisfactorily.

Simulation on the shape of tuna longline gear (다랑어 연승어구의 형상에 관한 시뮬레이션)

  • 이지훈;이춘우
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.39 no.4
    • /
    • pp.305-317
    • /
    • 2003
  • Underwater shape and hook depth in tuna longline gear are important factors to decide fishing performance. It also should be considered that management and analysis of hooked rate data from hooked fish species and sizes, and each fishing would be used as a reference data in the future fishing. In this research, after analyzing underwater shape of tuna longline gear by current direction and speed using simulation, experiments were executed in flume tank to verify accuracy of the analysis. Also using the depth of each hook from the simulation, a database system was setup to process the data of bait and hooked fish species. The results were as follows;1. When the attack angle and the shortening rate are fixed, a decrease of the hook depth is proportion to an increase of current speed. 2. When the shortening rate and current speed are fixed, a decrease of hook depth is proportion to an increase of attack angle. 3. When the attack angle and velocity of flow are fixed, a decrease of hook depth is proportion to an increase of shortening rate 4. As a result of comparison between the underwater shape by simulation and that by model gear, the result of the simulation was very close to that of model gear within $$ {\pm}3%$$ 3% error range. 5. In this research, hooked rate database system using hook depth of simulation can analyze the species and size of fish by the parameter; bait. hook depth, so It could be helpful to manage and analyze the hooked data on the field.

The plan of depreciation vortex developing a Pump suction Pipes through Sump model test (수리모형실험을 통한 펌프 흡입배관부 보텍스 현상 저감방안)

  • Ahn, IS;Kim, SH;Kim, KY;Roh, HW;Lee, YH
    • 유체기계공업학회:학술대회논문집
    • /
    • 2004.12a
    • /
    • pp.193-198
    • /
    • 2004
  • In general, the function of intake structure, whether it be a open channel, a fully wetted tunnel, a sump or a tank is to supply an evenly distributed flow to a pump station. An even distribution of flow, characterized by strong local flow, can result in formation of surface or submerged vortices, and with certain low values of submergence, my introduce air into pun, causing a reduction of capacity and efficiency, an increase in vibration and additional noise. This study investigated experimentally the formation of the vortex to understand the mechanism of vortex formation and to prevent the formation of vortex in the sump model using by the model test and PIV tool. Sump model was manufactured to 1/8 scale with the drawing of W intake pumping station. from the results of model test and PIV, the vortex were occurred the in the whole section. Thus, sump model tests with the anti-vortex device might be considered to prevent the formation of vortex in the sump model.

  • PDF

A Study on the Green Ship Design for Ultra Large Container Ship (대형 컨테이너 운반선의 그린쉽 설계에 관한 연구)

  • Kim, Mingyu;Park, Dong-Woo
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.21 no.5
    • /
    • pp.558-570
    • /
    • 2015
  • A study on the green ship design for Ultra Large Container Ship (ULCS, 18,000 TEU Class Container Ship) was performed based on the four step procedures of the initial design and hull form optimization to maximize economic and propulsive performance. The first, the design procedure for ULCS was surveyed with economic evaluation considering environmental rules and regulations. The second, the characteristics of single and twin skeg container ships were investigated in view of initial design and performances. The third, the hull form optimization for single and twin skeg ships with the same dimensions was conducted to improve the resistance and propulsive performances at design draught and speed by several variations and the results of the optimization were verified by numerical calculations of CFD and model test. The last, for the estimated operating profile of draught and speed, the hull forms of single and twin sked ships were optimized by CFD. From this study, the methodologies to optimize the hull form of ULCS were proposed with considerations during the green ship design and the improvement of the energy efficiency for the optimized hull forms was confirmed by the proposed formula of the total energy considering design conditions, operating profile and fuel oil consumption.

A Propeller Design Method with a New Blade Section : Applied to Container Ships (새로운 날개단면을 이용한 프로펠러 설계법 - 콘테이너선에 응용 -)

  • J.T. Lee;M.C. Kim;J.W. Ahn;S.H. Van;H.C. Kim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.28 no.2
    • /
    • pp.40-51
    • /
    • 1991
  • A Propeller design method using the newly developed blade section(KH18), which behaves better cavitation characteristics, is presented. Experimental results for two-dimensional foil sections show that the lift-drag curve and the cavitation-free bucket diagram of the new blade section are wider comparing to those of the existion NACA sections. This characteristic of the new section is particularly important for marine propeller applications since angle of attack variation of the propeller blade operating behind a non-uniform ship's wake is relatively large. A lifting surface theory is used for the design of a propeller with the developed section for a 2700 TEU container ship. Since the most suitable chordwise loading shape is not known a priori, chordwise loading shape is chosen as a design parameter. Five propellers with different chordwise loading shapes and different foil sections are designed and tested in the towing tank and cavitation tunnel at KRISO. It is observed by a series of extensive model tsets that the propeller(KP197) having the chordwise loading shape, which has less leading edge loading at the inner radii and more leading edge loading at the outer radii of 0.7 radius, has higher propulsive efficiency and better cavitation characteristics. The KP197 propeller shows 1% higher efficiency, 30% cavitation volume reduction and 9% reduction of fluctuating pressure level comparing to the propeller with an NACA section. More appreciable efficiency gain for the new blade section propeller would be expected by reduction of expanded blade area considering the better cavitation characteristics of the new blade section.

  • PDF

Analysis of Resistance Performance of a Ship having a Large Attitude based on CFD (CFD에 의한 자세변화가 큰 선박의 저항성능 해석)

  • Kim, Hyun-Soo;Park, Dong-Woo;Yang, Young-Jun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.7
    • /
    • pp.961-967
    • /
    • 2019
  • This research presents an efficient method based on computational fluid dynamics (CFD) for estimating the resistance performance of a ship with a large settlement amount and a dynamic trim. The settlement of the inviscid flow analysis and the results of dynamic trim were used to set a large attitude for the ship prior to performing a viscous flow analysis; a viscous flow analysis was subsequently performed by Dynamic Fluid Body Interaction (DFBI). This method is termed as method I, in which a simple grating system can be used without employing the overset mesh technique by setting many attitudes before interpretation. Thus, method I is advantageous in reducing calculation time and improving calculation accuracy. The viscous flow analysis was performed using a commercial CFD code STAR-CCM+. Compared with the final convergence result, the first viscous flow analysis result of method I exhibited a variation of less than 1 % of resistance. The result was obtained by changing the gratings each time an attitude is changed at each calculation stage, based on the DFBI method provided to STAR-CCM+ using a simple grating system, which is not a superposed grating. This method is termed as method II. Compared with method II of resistance, method I exhibited a dif erence of 0.03-0.6 % for linear velocity. The results of method I were confirmed to be qualitatively and quantitatively appropriate through comparison with several trillion simulations.

Pull-out Resistance Behavior of the Anchor with the Bump Type Resistors (돌기형 저항체를 설치한 앵커의 인발저항거동)

  • You, Min-Ku;Lee, Sang-Duk
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.11
    • /
    • pp.35-43
    • /
    • 2017
  • In this study, the pull-out resistance behavior of the anchor with the bump type resistors at the anchor body was experimentally investigated. In the model tests, the pull-out resistance was measured by pulling out the anchor at a constant speed. Anchor body was installed in the center of the circular sand tank. Pull-out tests were conducted for 10 conditions. The anchor type (existence of the resistor), the friction conditions of the anchor body surface ($1/3{\phi}$, $2/3{\phi}$, ${\phi}$), the bump type resistor set number (1set, 2set, 4set), and the height of resistors (0.05d, 0.10d, 0.20d) were varied. The load-displacement relationship for each conditions was measured during the pull-out tests at a constant speed (1 mm/min). Maximum pull-out length was 80 mm. As a result, the pull-out behavior of the friction type anchor and the expansion type anchor was different. As the number of resistor increased, the maximum pull-out resistance increased and the residual pull-out resistance ratio increased significantly, which were at 171~591 percent larger than that of the friction type anchor.