DOI QR코드

DOI QR Code

Pull-out Resistance Behavior of the Anchor with the Bump Type Resistors

돌기형 저항체를 설치한 앵커의 인발저항거동

  • You, Min-Ku (Dept. of Civil and Transportation Eng., Ajou Univ.) ;
  • Lee, Sang-Duk (Dept. of Civil and Transportation Eng., Ajou Univ.)
  • 유민구 (아주대학교 건설교통공학과) ;
  • 이상덕 (아주대학교 건설교통공학과)
  • Received : 2017.08.22
  • Accepted : 2017.11.14
  • Published : 2017.11.30

Abstract

In this study, the pull-out resistance behavior of the anchor with the bump type resistors at the anchor body was experimentally investigated. In the model tests, the pull-out resistance was measured by pulling out the anchor at a constant speed. Anchor body was installed in the center of the circular sand tank. Pull-out tests were conducted for 10 conditions. The anchor type (existence of the resistor), the friction conditions of the anchor body surface ($1/3{\phi}$, $2/3{\phi}$, ${\phi}$), the bump type resistor set number (1set, 2set, 4set), and the height of resistors (0.05d, 0.10d, 0.20d) were varied. The load-displacement relationship for each conditions was measured during the pull-out tests at a constant speed (1 mm/min). Maximum pull-out length was 80 mm. As a result, the pull-out behavior of the friction type anchor and the expansion type anchor was different. As the number of resistor increased, the maximum pull-out resistance increased and the residual pull-out resistance ratio increased significantly, which were at 171~591 percent larger than that of the friction type anchor.

본 연구에서는 정착부 표면에 저항체를 설치한 앵커의 인발거동특성을 모형시험을 통해 규명하였다. 모형시험은 원형의 토조 중앙에 앵커체를 설치한 후 앵커를 등속으로 인발하면서 인발저항력을 측정하였다. 본 연구에서는 앵커형식(저항체 설치 유무), 앵커체 표면의 마찰조건($1/3{\phi}$, $2/3{\phi}$, ${\phi}$)과 돌기형 저항체 개수(1set, 2set, 4set), 돌기형 저항체 높이(0.05d, 0.10d, 0.20d) 등 총 10가지의 조건에 대하여 인발시험을 실시하였다. 인발시에는 일정한 속도(1mm/min)를 유지하였으며, 최대 80mm까지 인발하여 각 조건별 인발하중 및 변위를 측정하였다. 인발시험 결과 확장형 앵커는 마찰형 앵커와 비교하여 최대 인발저항력 뿐만 아니라 잔류 인발저항력도 크게 발생하는 것으로 분석되었다. 돌기형 저항체의 설치개수 증가에 따라 최대 인발저항력이 증가하였으며, 잔류 저항력 비율은 171~591%로 마찰형 앵커에 비해 현저하게 증가하였다.

Keywords

References

  1. Lee, S.D. (2016), "Earth Pressure Theory", CIR publication, pp. 177-191.
  2. Lee, S.D. (2008), "Foundation Engineering", CIR publication, pp.299-317.
  3. Lee, A.K. (2012), "Pullout Resistance Behavior of Expansion Type Anchor", Master thesis, Ajou University-Graduate School, pp.50-63.
  4. Lee, J.H., Im J.C., Park, L.K., and Joo, I.G. (2010), "The Study on Mechanical Characteristic of Spine Type Pack Anchor", Proceedings of Korean Geo-Environmental Society, pp.411-416.
  5. Jaky, J. (1936), "Stability of Earth Slopes", Proceedings, 1st. ICSMFE June 22-26, at Harvard University, Cambridge, mass, Vol.2, pp.229-233.
  6. Prandtl, L. (1920), "Uber die Harte plasticher Korper", Nachrichten der Kgl. Ges. der Wissenschaften, Gottingen, Math.-phys. Klasse, S, pp.74-85.
  7. Prandtl, L. (1921), "Uber die Eindringungsfahigkeit Plastischer Baustoffe und die Festigkeit von Schneiden", Z. Angw. Math. Mech., Basel, Switzerland, Vol.1, No.1.
  8. Kotter, F. (1888), "Uber das problem der Erddruckbestimmung", Verhandl. der Phys. Ges. Berlin.
  9. Hwang, Y.S. (2015), "Earth Pressure on the Rigid Wall in Sand under the Influence of the Adjacent Ground Excavation", PhD thesis, Ajou University-Graduate School, pp.27-28.