• 제목/요약/키워드: TABU Algorithm

검색결과 191건 처리시간 0.027초

동일하지 않는 병렬기계 일정계획을 위한 휴리스틱 방법 (A Hueristic Algorithm for Nonidentical Parallel Machines Scheduling)

  • 전태웅;박해천
    • 산업경영시스템학회지
    • /
    • 제23권59호
    • /
    • pp.37-42
    • /
    • 2000
  • The parallel machines scheduling problems is one of the combinatorial optimization problems that often occurs in the real world. This problem is classified into two cases, one of which is the case which processing time are identical and the other, nonidentical. Not so much researches have been made on the case that nonidentical parallel machines scheduling problem. This study proposes Tabu Search methods for solving parallel machines scheduling problems related to due dates: minimizing mean tardiness, minimizing the number of tardy jobs, minimizing the maximum tardiness.

  • PDF

Optimum Design of Sandwich Panel Using Hybrid Metaheuristics Approach

  • Kim, Yun-Young;Cho, Min-Cheol;Park, Je-Woong;Gotoh, Koji;Toyosada, Masahiro
    • 한국해양공학회지
    • /
    • 제17권6호
    • /
    • pp.38-46
    • /
    • 2003
  • Aim of this article is to propose Micro-Genetic Simulated Annealing (${\mu}GSA$) as a hybrid metaheuristics approach to find the global optimum of nonlinear optimisation problems. This approach combines the features of modern metaheuristics such as micro-genetic algorithm (${\mu}GAs$) and simulated annealing (SA) with the general robustness of parallel exploration and asymptotic convergence, respectively. Therefore, ${\mu}GSA$ approach can help in avoiding the premature convergence and can search for better global solution, because of its wide spread applicability, global perspective and inherent parallelism. For the superior performance of the ${\mu}GSA$, the five well-know benchmark test functions that were tested and compared with the two global optimisation approaches: scatter search (SS) and hybrid scatter genetic tabu (HSGT) approach. A practical application to structural sandwich panel is also examined by optimism the weight function. From the simulation results, it has been concluded that the proposed ${\mu}GSA$ approach is an effective optimisation tool for soloing continuous nonlinear global optimisation problems in suitable computational time frame.

이웃해 탐색 기법을 이용한 Maximal Covering 문제의 해결 (Neighborhood Search Algorithms for the Maximal Covering Problem)

  • 황준하
    • 한국컴퓨터정보학회논문지
    • /
    • 제11권1호
    • /
    • pp.129-138
    • /
    • 2006
  • 지금까지 maximal covering문제를 해결하기 위해 다양한 기법들이 적용되어 왔다. 타부 탐색 역시 그 중의 하나이다. 그러나 기존 연구에서는 타부 탐색을 비롯한 언덕오르기 탐색이나 시뮬레이티드 어닐링과 같은 이웃해 탐색 기법들에 대한 종합적인 분석과 성능 향상을 위한 노력이 부족하였다. 본 논문에서는 다양한 실험과 분석을 통해 이웃해 탐색 기법들의 성능을 향상시키기 위한 방안을 소개한다. 기본적으로 모든 이웃해 탐색 기법들은 k-exchange 이웃해 생성 방법을 사용하고 있으며 다양한 파라미터 설정에 따라 각 기법의 성능이 어떻게 달라지는가를 분석하였다. 실험 결과 단순 언덕오르기 탐색과 시뮬레이티드 어닐링이 다른 기법들에 비해 훨씬 우수한 탐색 성능을 보였으며, 일반적인 경우와는 달리 단순 언덕오르기 탐색이 시뮬레이티드 어닐링과 비슷한 성능을 보임을 확인하였다.

  • PDF

가공특성 지식DB를 통한 고속가공에서 최적조건선정에 관한 연구 (A Study on Optimization of Cutting Conditions Using Machining Characteristics DB in High Speed Machining)

  • 원종률;남성호;홍원표;이석우;최헌종
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.163-168
    • /
    • 2005
  • It is one of the most important things to determinate optimized cutting conditions which satisfy productivity and cost simultaneously in production and CAPP systems. These days many researchers have figured out the optimizing way for solutions of multi-object function to find the approach methods using algorithm such as genetic algorithm or tabu search, etc., instead of mathematical methods. The main creation of objective function is proposed by empirical method but which is difficult to set it up and to analysis. In this paper, an optimization method of cutting condition is shown using the ANN and GA for the multi-objective function in high speed machining.

  • PDF

(m, n)중 연속(r, s) : F 시스템의 정비모형에 대한 개미군집 최적화 해법 (Ant Colony Optimization Approach to the Utility Maintenance Model for Connected-(r, s)-out of-(m, n) : F System)

  • 이상헌;신동열
    • 산업공학
    • /
    • 제21권3호
    • /
    • pp.254-261
    • /
    • 2008
  • Connected-(r,s)-out of-(m,n) : F system is an important topic in redundancy design of the complex system reliability and it's maintenance policy. Previous studies applied Monte Carlo simulation and genetic, simulated annealing algorithms to tackle the difficulty of maintenance policy problem. These algorithms suggested most suitable maintenance cycle to optimize maintenance pattern of connected-(r,s)-out of-(m,n) : F system. However, genetic algorithm is required long execution time relatively and simulated annealing has improved computational time but rather poor solutions. In this paper, we propose the ant colony optimization approach for connected-(r,s)-out of-(m,n) : F system that determines maintenance cycle and minimum unit cost. Computational results prove that ant colony optimization algorithm is superior to genetic algorithm, simulated annealing and tabu search in both execution time and quality of solution.

하이브리드 병렬 유전자 알고리즘을 이용한 최적 신뢰도-중복 할당 문제 (An Optimal Reliability-Redundancy Allocation Problem by using Hybrid Parallel Genetic Algorithm)

  • 김기태;전건욱
    • 산업공학
    • /
    • 제23권2호
    • /
    • pp.147-155
    • /
    • 2010
  • Reliability allocation is defined as a problem of determination of the reliability for subsystems and components to achieve target system reliability. The determination of both optimal component reliability and the number of component redundancy allowing mixed components to maximize the system reliability under resource constraints is called reliability-redundancy allocation problem(RAP). The main objective of this study is to suggest a mathematical programming model and a hybrid parallel genetic algorithm(HPGA) for reliability-redundancy allocation problem that decides both optimal component reliability and the number of component redundancy to maximize the system reliability under cost and weight constraints. The global optimal solutions of each example are obtained by using CPLEX 11.1. The component structure, reliability, cost, and weight were computed by using HPGA and compared the results of existing metaheuristic such as Genetic Algoritm(GA), Tabu Search(TS), Ant Colony Optimization(ACO), Immune Algorithm(IA) and also evaluated performance of HPGA. The result of suggested algorithm gives the same or better solutions when compared with existing algorithms, because the suggested algorithm could paratactically evolved by operating several sub-populations and improve solution through swap, 2-opt, and interchange processes. In order to calculate the improvement of reliability for existing studies and suggested algorithm, a maximum possible improvement(MPI) was applied in this study.

컨테이너 터미널의 효율적인 선적 작업을 위한 Dual Cycle 계획 (Dual Cycle Plan for Efficient Ship Loading and Unloading in Container Terminals)

  • 정창윤;신재영
    • 한국항해항만학회지
    • /
    • 제33권8호
    • /
    • pp.555-562
    • /
    • 2009
  • 컨테이너 터미널의 주요 생산성 지표는 안벽에서의 작업 효율성이라 할 수 있다. 안벽에서는 Q/C(Quay Crane)이라는 장비가 접안 선박의 컨테이너를 하역한다. Q/C의 작업 생산성을 높이기 위해서는 좀 더 효율적인 Y/T(Yard Tractor)운영 방식이 필요하다. 기존 작업 방식(싱글 사이클)에서는 양하작업 이후 적하 작업이 이루어진다. 듀얼 사이클이란 양하작업과 적하 작업을 동시에 함으로써 안벽 생산성과 야드 트랙터의 이용률을 높이는 방법이다. 터미널에서 듀얼 사이클의 도입은 추가적인 장비의 도입 없이 운영에서의 변화만을 요구한다. 즉, 기존의 dedicate 시스템에서 pooling 시스템으로의 변화가 필요하다. 본 논문에서는 듀얼 사이클을 이용하는 항만에서의 작업 효율성을 증대시키기 위한 선적 계획 방법을 제시하고자 한다. 이 문제를 풀기위해 유전 알고리즘과 타부서치를 제시하였다.

소분자 도킹에서의 탐색알고리듬의 현황 (Recent Development of Search Algorithm on Small Molecule Docking)

  • 정환원;조승주
    • 통합자연과학논문집
    • /
    • 제2권2호
    • /
    • pp.55-58
    • /
    • 2009
  • A ligand-receptor docking program is an indispensible tool in modern pharmaceutical design. An accurate prediction of small molecular docking pose to a receptor is essential in drug design as well as molecular recognition. An effective docking program requires the ability to locate a correct binding pose in a surprisingly complex conformational space. However, there is an inherent difficulty to predict correct binding pose. The odds are more demanding than finding a needle in a haystack. This mainly comes from the flexibility of both ligand and receptor. Because the searching space to consider is so vast, receptor rigidity has been often applied in docking programs. Even nowadays the receptor may not be considered to be fully flexible although there have been some progress in search algorithm. Improving the efficiency of searching algorithm is still in great demand to explore other applications areas with inherently flexible ligand and/or receptor. In addition to classical search algorithms such as molecular dynamics, Monte Carlo, genetic algorithm and simulated annealing, rather recent algorithms such as tabu search, stochastic tunneling, particle swarm optimizations were also found to be effective. A good search algorithm would require a good balance between exploration and exploitation. It would be a good strategy to combine algorithms already developed. This composite algorithms can be more effective than an individual search algorithms.

  • PDF

직렬시스템의 신뢰도 최적 설계를 위한 Hybrid 병렬 유전자 알고리즘 해법 (A Hybrid Parallel Genetic Algorithm for Reliability Optimal Design of a Series System)

  • 김기태;전건욱
    • 산업경영시스템학회지
    • /
    • 제33권2호
    • /
    • pp.48-55
    • /
    • 2010
  • Reliability has been considered as a one of the major design measures in various industrial and military systems. The main objective is to suggest a mathematical programming model and a hybrid parallel genetic algorithm(HPGA) for the problem that determines the optimal component reliability to maximize the system reliability under cost constraint in this study. Reliability optimization problem has been known as a NP-hard problem and normally formulated as a mixed binary integer programming model. Component structure, reliability, and cost were computed by using HPGA and compared with the results of existing meta-heuristic such as Ant Colony Optimization(ACO), Simulated Annealing(SA), Tabu Search(TS) and Reoptimization Procedure. The global optimal solutions of each problem are obtained by using CPLEX 11.1. The results of suggested algorithm give the same or better solutions than existing algorithms, because the suggested algorithm could paratactically evolved by operating several sub-populations and improving solution through swap and 2-opt processes.

A Genetic Algorithm for Minimizing Delay in Dynamic Overlay Networks

  • Lee, Chae-Y.;Seo, Sang-Kun
    • 한국경영과학회:학술대회논문집
    • /
    • 한국경영과학회 2007년도 추계학술대회 및 정기총회
    • /
    • pp.459-463
    • /
    • 2007
  • Overlay multicast is an emerging technology for next generation Internet service to various groups of multicast members. It will take the place of traditional IP multicast which is not widely deployed due to the complex nature of its technology. The overlay multicast which effectively reduces processing at IP routers can be easily deployed on top of a densely connected IP network. An end-to-end delay problem is considered which is serious in the multicast service. To periodically optimize the route in the overlay network and to minimize the maximum end-to-end delay, overlay multicast tree is investigated with genetic Algorithm. Outstanding experimental results are obtained which is comparable to the optimal solution and the tabu search.

  • PDF