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ABSTRACT: Aim of this article is to propose Micro-Genetic Simulated Annealing (UGSA) as a hybrid metaheuristics approach to find the
global optimum of nonlinear optimisation problems. This approach combines the features of modern metaheuristics such as micro-genetic
algorithms (UGAs) and simulated annealing (SA) with the general robustness of parallel exploration and asymptotic convergence, respectively.
Therefore, UGSA approach can help in avoiding the premature convergence and can search for better global solution, because of its wide spread
applicability, global perspective and inkerent parallelism. For the superior performance of the UGSA, the five well-known benchmark test
functions that were tested and compared with the two global optimisation approaches: scatter search (SS) and hybrid scatter genetic tabu
(HSGT) approach. A practical application to structural sandwich panel is also examined by optimising the weight function. From the simulation
results, it has been concluded that the proposed UGSA approach is an effective optimisation tool for solving continuous nonlinear global

optimisation problems in suitable computational time frame.

1. Introduction

The optimisation algorithms to solve the global optimisation
problems can be classified into three groups: deterministic,
stochastic, stochastically The
numerous surveys of these methods were appeared in
Floudas and Pardalos (1990), Rinnooy Kan and Timmer
(1989), and Trafalis and Kasap (2002). In recent years, some
of modern metaheuristics have been proposed such as
micro-genetic algorithms (Krishnakumar, 1989; Kim et al,
2002), simulated annealing (Kirkpatrick et al., 1983; Romeijn
and Smith, 1994), scatter search (Glover et al., 2003), and
tabu search (Al-Sultan and Al-Fawzan, 1997).

Deterministic methods attempt to generate trajectories that

and combined methods.

eventually converge to points, which satisfy the criteria of
local optimality. They are beneficial only when the starting
point belongs to the region of attraction of the global
optimum. This infers that any deterministic method could be
attracted by the local optimum instead. On the other hand,
stochastic methods attempt to reasonably cover the whole
search space, so that all local and global optima are
identified. That is, points that do not strictly improve the
objective function can also be created and take part in the
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search process.

The stochastically combined (hybrid) method has been
proposed to solve various search and optimisation problems.
The micro-genetic algorithms (UGAs) and simulated
annealing (SA) have complementary strengths and
weaknesses. While the uGAs exhibit parallelism and are
better suited to implementation on parallel searches, it
sometimes suffers from poor convergence properties and a
serial bottleneck due to global selection. By contrast, the SA
has good convergence properties, but it cannot easily exploit
parallelism.

With  aforementioned  characteristics
metaheuristics, a hybrid approach is suggested in this article

of modemn
to solve continuous nonlinear global optimisation problems.
This new approach, referred to as Micro-Genetic Simulated
Annealing or PGSA, was developed by extending the nGAs

(Kim et al, 2002; Kim, 2002) to SA (Kim et al, 2003) by
introducing the reproductive plan using metropolis selection
to steer the global solution spaces more extensively.

The pPGSA works with encoding populations as in the
simple-genetic algorithms (SGAs), but is implemented serially
using the annealing schedules in a small population. The
major difference between the PGAs and pGSA is how to
make a reproductive plan for better searching skill due to
the selection strategy. Therefore, a metropolis selection was

proposed as a new conception for the reproductive plan.
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Here, a new chromosome is accepted or rejected according
to metropolis algorithm.

From the simulation results of this article, the superior
performance of the NGSA is discussed with five well-known
benchmark functions shown in Appendix and a practical
application in engineering field mentioned in Section 5. It is
shown that the YGSA implementation overcomes the poor
convergence properties and searches the global optimum
solution much faster than other metaheuristics methods: SS
and HSGT. Consequently, it has been concluded that the
proposed IGSA approach is an effective optimisation tool
continuous  nonlinear ~ global

for solving optimisation

problems.
2. Metaheuristics Optimisation Techniques

2.1 Simulated annealing (SA) approach

SA was motivated by an analogy to annealing in solids.
Metropolis et al. (1953) first used the origin principle of SA
to simulate on a computer the annealing process of crystals.
Kirkpatrick et al. (1983) took the idea of the metropolis
algorithm and applied it to combinatorial optimisation
problems. The idea was to use simulated annealing to
search for feasible solutions and converge to an optimal
solution.

Consider a huge number of particles of fixed volume at
some temperature T. Since the particles move, the system
can be in various states. The probability that the system is
in a state of certain energy E is given by the Boltzmann
distribution Prob (E) ~exp(— E/xT). The energy state is the
fluctuation of the objective cost value in the optimisation
process. The quantity k(Boltzmann's constant) is a constant
of nature that relates temperature to energy. In other words,
the system sometimes goes uphill as well as downhill. The
simulation in the metropolis algorithm calculates the new
energy of the system. If the energy has decreased then the
system moves to this state. If the energy has increased then
the new state is accepted using the probability returned by
the above formula.

A certain number of iterations are carried out at each
temperature, and then the temperature is decreased. This is
repeated until the system freezes into a steady state. The SA
approach is given in Fig. 1. The operators used for SA are
inversion and transport operator, and will be discussed in
the following Section 3.2.

2.2 Micro—genetic algorithms (z GAs) approach
The idea of PGAs was suggested by some theoretical results

obtained by Goldberg (1989b), according to which a

population size of 3 was sufficient to converge, regardless of
the chromosomic length. The first implementation of the
GAs was reported by Krishnakumar (1989). He used a
population size of 5, a crossover rate of 1, and a mutation
rate of zero. For cutting path and traveling salesman
problem, Kim ef al. (2002, 2003) and Kim (2002) conducted
to implement NGAs in order to achieve fast searching for
better evolution and associated cost evaluation in global

solution-spaces.

S: generate initial solution
T: initial temperature
While not yet (frozen state) do {
perform loop L times {
decide operators (transport or inversion)
generate new neighbour S*
A = cost(S*) - cost(S)
if (A < 0.0) or (random < exp-2/«T)
set S = S»
} set T =a-T (reduce temperature)
} End while

Fig. 1 Developed simulated annealing approach

The pGAs approach used in this article is given in Fig. 2
and described as follows: an initial population of binary
chromosomes is generated using random fashion. Then, each

chromosome is evaluated, and the statistics is also
performed for optimised tendency. Next, the current
population is shuffled for reproductive plan. The

reproductive plan is accomplished by applying the genetic

operators (crossover and mutation) on the current

population. Each new chromosome is evaluated and
performed by statistic procedure. The next job is a selection
strategy, which is called airborne selection operator (Kim et
al., 2002). This selection strategy was developed to steer
near-global optimum solution for uWGAs approach by current

authors. In this way, the important skill is that the

initialize a population with 5 chromosomes

evaluate each chromosome and perform statistics

While not (terminating condition) do {
shuffle current population for reproductive plan
apply genetic operators
evaluate new chromosomes and perform statistics
apply airborne selection for new population
update current iteration

} End while

Fig. 2 Developed micro-genetic algorithms approach

information about good structure is not lost. This process is
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repeated until the stopping criteria are satisfied. More
detailed descriptions for IGAs are mentioned in Kim ef al.
(2002, 2003) and Kim (2002).

2.3 Scatter search (SS) approach

The SS approach was introduced to obtain a near-optimal
solution to an integer programming problem by Glover
(1977). This approach derives its foundations from earlier
strategies for combining decision rules and constraints, with
the goal of enabling a solution procedure based on the
combined elements to yield better solutions than one based
only on the original elements. That is, the approach was on
the assumption that about the
desirability of alternative choices is captured in different
forms by different rules, and that this information can be
exploited more effectively when integrated by means of a
combination mechanism than when treated by the standard
strategy of selecting different rules one at a time, in

information relative

isolation from each other.

The SS approach, which was proposed by Glover et al.
(2003) to solve any nonlinear optimisation problems on
bounded variables, was described for the comparisons of the
simulation results in this article. This approach is given in
Fig. 3. The procedure is sketched as follows:

Step 1: Generate a set of initial solution vectors to guarantee
a critical level of diversity, and then apply heuristic
processes as an attempt to improve these solutions.
Designate a subset of the best vectors to be reference
solutions.

Step 2: Create new solutions consisting of structured
combinations of subsets of the current reference
solutions.

Step 3: Apply the heuristic processes used in Step 1 to
improve the solutions created in Step 2. These
heuristic processes must be able to operate on
infeasible solutions and may or may not yield
feasible solutions.

generate a set of initial solution vectors
improve these solutions by heuristic processes
designate reference solutions
While not (specified iteration limit) do {
create new solutions
improve these solutions by heuristic processes
extract improved best solutions
add these solutions to reference set
} End while

Fig. 3 Scatter search approach (Glover et al., 2003)

Step 4: Extract a collection of the improved best solutions
from Step 3 and add them to the reference set.

Step 5: Repeat Steps 2, 3 and 4 until the reference set does
not change. Diversify the reference set by re-starting
from Step 1. Stop when reaching a specified iteration
limit.

2.4 Hybrid scatter genetic tabu (HSGT) approach

The HSGT approach was suggested by Trafalis and Kasap
(2002) to solve an unconstrained continuous nonlinear global
optimisation problem. This approach combined the features
of the following metaheuristics: scatter search, genetic
algorithms, and tabu search. The HSGT approach starts with
a randomly generated initial point and search directions to
construct a collection of solutions. Then, it computes the
weighted centre of gravity using these solutions and the
weight assigned to each solution. Next, a new weighted
centre of gravity is accepted or rejected according to its
tabu status. Subsequently, a new set of search directions
using the old search directions are generated either
randomly or using the genetic operators. If the new centre
of gravity is tabu, then the new directions are randomly
generated. Otherwise, the genetic operators are used to
construct the new search directions. At this stage, a
complete iteration of the HSGT approach is performed, and
the final weighted centre of gravity is the solution to the
problem. The procedure is repeated umtil the stopping
criterion is satisfied. The HSGT approach is given in Fig. 4.

Step 1: generate initial solution, Sk and set Sbest = Sk

Step 2: generate reference points

Step 3: evaluate objective function for each of reference points

Step 4: assign weight to each of reference points

Step 5: compute new solution, Sk

Step 6: if cost(Sk1) < cost(Srest) then go to Step 8

Step 7: check tabu status. If S« satisfies tabu conditions then
do not accept S*! as solution, go to Step 2 to generate
new reference points

Step 8: Seest = Sk+1 ypdate search directions by genetic operators

Step 9: go to Step 2 and repeat until stopping criterion satisfy

Fig. 4 Hybrid scatter genetic tabu approach (Trafalis and
Kasap, 2002)

3. Micro—Genetic Simulated Annealing
(2 GAs) Approach

The pGAs and SA have complementary strengths and
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weaknesses. While the NGAs exhibit parallelism and are
better suited to implementation on parallel explorations, it
sometimes suffers from poor convergence properties and a
serial bottleneck due to global selection. The SA, by contrast,
has good convergence properties, but it cannot easily exploit
With above characteristics of

(LGAs and SA),
suggested to solve continuous nonlinear global optimisation

parallelism. modern

metaheuristics a hybrid approach is
problems in this article.

This new approach, referred to as Micro-Genetic Simulated
Annealing or §GSA, has been shown to overcome the poor
convergence properties and perform better than other
with five benchmark functions in
Appendix. Specifically, the current authors extend the uUGAs
(Kim et al., 2002 Kim, 2002) to SA (Kim ef al, 2003) by
introducing the reproductive plan using metropolis selection

approaches  alone

to steer the global solution spaces more extensively.

The UGSA approach explores in a small population with
some genetic operators to find the global optimum solution.
The uGSA works with encoding populations as in the
simple-genetic algorithms (SGAs), but is implemented serially
using the annealing schedules. The main skeleton of the n
GSA is illustrated in the Fig. 5.

r
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Fig. 5 Main skeleton of the uGSA

3.1 Reproductive plan by metropolis selection

An initial population, consisting of five chromosomes, is
generated by random fashion to serve as a starting
solution-space with binary coding. The population serves as
a reservoir of information about the environment and as a
basis for generating new trials. At each temperature step,
the fitter chromosomes are selected to produce offspring,
which inherit the best characteristics from the parents, for
the next annealing schedule. After many annealing schedules
of selection for the fitted chromosomes, the result is
hopefully a population that is substantially fitter than the
original.

Reproductive plan is to represent a legal domain-solution
to the problem described by a string of genes that can take
on some value from a specified finite range. With the
structure designed and built, the five main operators are
adopted for evolution process of the HPGSA in global
nonlinear optimisation problems. These genetic operators are
crossover, inversion, sectioning, transport, and mutation. The
metropolis selection is proposed as a new conception for the
reproductive plan of the UGSA to steer global optimum
solution. The metropolis selection is the process of choosing
chromosomes for the next iteration by the metropolis
algorithm from chromosomes of the previous and current
iteration. By exploiting the metropolis selection strategy, the
processing bottleneck of global selection is eliminated.

Since the UGSA has evolved in a dual solution-spaces
(previous and current solution-spaces) to generate new
solution-spaces as a parallel process, the nGSA approach can
help in avoiding the premature convergence and always
look for better global solution. Although this metropolis
selection is based on sampling space of the SGAs, it is
reasonable to implement this selection strategy on enlarged
sampling space, as illustrated in Fig. 6.

Parent
Population
New  «| Metropolis Genetic
Population Algorithms Operators
Offspring |
Population

Fig. 6 Metropolis selection strategy

3.2 Genetic operators

The uGSA is composed of five genetic operators such as
crossover, inversion, sectioning, transport, and mutation.
These genetic operators allow the exploration of new
solution spaces in the global domain space. That is, these
operators play different roles at different stages of the

evolutionary process. The following five operators are
suggested as the essential contributors for each approach

that was mentioned in Section 2.
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3.2.1 Crossover operator

Once a pair of chromosomes has been selected, crossover
can take place to produce offspring. Crossover exchanges
alleles among adjacent pairs of chromosomes in the new
population. The contribution of the crossover is times
derived in which the crossover ratio crosses population size.
Since the UGSA only use the crossover one time in the
current population, this crossover rate is not used in the 1
GSA approach.

Crossover might be implemented in a variety of ways, but
there are theoretical advantages in treating the chromosome
as a ring, choosing two crossover points, and exchanging
the segment between these points (Goldberg, 1989a). In this
concept of exchanging partial information, two different
crossover points are chosen at random. This will divide the
chromosome into three segments. The crossover operation is
completed by exchanging the middle segment between the
crossover points. If, after crossover, the offspring are
different from the parents, then the offspring replace the
parents, and are measured by an evaluation and statistic

procedure later on.

3.2.2 Inversion operator
The origin of this strategy was used in the Lin-Kernighan
(1973) heuristic for the travelling salesman problem. Let

(s, 85,°"*,5,) be the structure of the current chromosome.

There is a bond between s, and s, s, and sy, ***, s,_,;
and s, and s, and s, in the current chromosome. In the
two bonds exchange perturbation strategy, two bonds are
selected at random and broken. These are replaced by the
two unique bonds required to rejoin the chromosome and
create a new one. For example, if the bonds (s, s;,,) and

(s;,s;,,) are broken, for i<j<», the new bonds are
(s;,s) and (5,44, 8544)-

The net result is that the segment between s;,, and s;
is inverted. As illustrated in Fig 7, the perturbed

chromosome is (s, ", $;, 8,5 81,5 Sit 1s Sj 15 **"s S

S, S, S S, sj+1 S,

i i+1 J

Fig. 7 Inversion strategy with two bonds

3.2.3 Sectioning operator

This strategy has three bonds between (s, s;:+)),

1< j<kn.

chromosome.

(s;,8;49) and (54 5.010), These bonds are

in the Therefore, this
chromosome has four continuous segments. This sectioning

broken current

strategy selects two continuous segments, (s;,,s;) and
(s;+1,54), and a target point, s, The target point is
randomly chosen as a pivoting point for moving these
segments. That is, the segments are swapped at the front of

the target point to generate a new offspring,

Fig. 8 shows the perturbed chromosome,
(81, Sim1s Sja1s ™ s Sk Sit 10 " 8o Sin S 1 7% S,0)-
i——}—& J
sl Si-l Si Si+\ S] Sj‘rl Sk SkH Sn

Fig. 8 Sectioning strategy with three bonds

3.2.4 Transport operator
This strategy has two bonds between (s, ;4 )
and (s, s;;,), i<j<{n. These bonds are selected at

random and broken in the current chromosome. This
strategy consists of determining whether any segment
in the current chromosome can be inserted between
two segments so as to decrease the fitness. A
segment (s,,,s,) is removed and then replaced in
between a bond (s,,s;;,) on another, randomly
selected, part of the chromosome. The perturbed
chromosome 18 (51, =%, S;, Sj 15 """ Sy Sit 1577 ;)

as illustrated in Fig. 9.

NIy

S, S, S, S S

i j+l n

Fig. 9 Transport strategy with two bonds

3.2.5 Mutation operator

Once the new population has been done by genetic
operators (crossover, inversion, sectioning, and transport), a
mutation is applied to each chromosome in the new
population. The mutation is usually used as a background
in the §GSA. It helps to prevent premature loss of alleles
and enables the algorithm to explore the domains containing
potentially better chromosomes. Therefore, this operator



Optimum Design of Sandwich Panel using Hybrid Metaheuristics Approach 43

leads independently the possibility to explore the whole
search space from the specific initial population.

In binary coding, the mutation operator that attempts to
introduce some random alteration of the genes, eg, 0
becomes 1 and viceversa. Each position of the chromosome
is given a chance (mutation ratio) of undergoing mutation.
This is implemented by computing an interarrival interval
between mutations, assuming a mutation rate.

4. Benchmark Results

With general definition of global optimisation, a series of
computational benchmark was performed using five
well-known test functions, which were taken from the
literature  to
mathematical representations of these test functions are fully

specialized compare our approach. The
explained in the Appendix.

The proposed UGSA approach was coded in C language
on a personal computer with 500-MHz Pentium CPU and
192 MB RAM. In order to compare the effectiveness of the
proposed PGSA approach, two more global optimisation
techniques shown in Table 1 were tested and compared on
benchmark test functions. HSGT approach developed by
Trafalis and Kasap (2002), and SS approach developed by
Glover et al. (2003) are also tested to optimise the same test
functions. The coding of SS approach downloaded from the
Martis website (2003).

The probability of obtaining the global minimum for the 1
GSA approache is measured by running the 100,000
independent trial iterations for each of the benchmark test
functions. The compared HSGT and S5 approaches are
measured by running 100 independent runs and 20
iterations, respectively. The parameters used in pPGSA are
population size (100) and mutation rate (0.06). In the HSGT
approach, the optmum results of the test functions are
taken from the research of Trafalis and Kasap (2002).
Moreover, the optimum results in the S5 approach are
obtained from the computational simulations. The quality of
solutions obtained by each approach in this article was
measured by the number of best trials, gap from the global
minimum, and CPU time as shown in Tables 2-6 for each
of test functions.

The "number of best trials" and "gap from the global
minimum" are the numerical parameters based on the fitness
of the objective function. That is, the "number of best trials"
is an iteration number (or generation number) that a best
fitness is found in trial iterations during annealing schedule.
The "gap from the global minimum" is a distance between
the best fitness of the PGSA and the objective function

value of the benchmark test functions at the "number of
best trials". These parameters are important factors to
demonstrate the superior performance of the proposed u
GSA.

From the global optimum results (Tables 2~6), it can be
obviously seen that the UGSA approach finds the global
optimum solution, because of its wide spread applicability,
global perspective and inherent parallelism. This implies that
the results of the NGSA approach can converge to the global
optimum solution better than those of the other approaches
(HSGT and SS)
problems.

for continuous nonlinear optimisation

Table 1 Definition of global optimisation approaches

Method Full Name Reference
GSA Micro-Genetic Simulated Kim et al.
K Annealing (this paper)
HSGT Hybrid Scatter Genetic Tabu Trafalis and Kasap
(2002)
Glover et al.
Sss Scatter Search (2003)

Table 2 Results for Goldstein and Price’s function

Method CPU time Number of Gap f_rom
(seconds) best trials global minimum
nGSA 1.271 80,307 0.000001
HSGT 239 100 0.0001
SS 1.041 None 0.00001

Table 3 Results for 6-Hump Camelback function

Moethod CPU time  Number of Gap from
(seconds) best trials global minimum
pGSA 1.952 76,201 0.0
HSGT 372 100 0.0
ss 1.271 None 0.000002
Table 4 Results for Shubert function
Method ((:sPeICjortlldnsl)e lf)eu;?btiiralzf glok?a?png:iﬁum
uGSA 1.642 3,107 0.000001
HSGT 445 100 0.5617
S5 2213 None 0.003561
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Table 5 Results for Himmelblau's function

Method CPU time  Number of Gap from
(seconds) best trials global minimum
uGSA 1.351 78,289 0.0
HSGT 1.9 100 0.0
SS 15.812 None 0.0

Table 6 Results for Branin's function

CPU time  Number of Gap from
Method . -
(seconds) best trials global minimum
uGSA 1472 55,456 0.0
HSGT 4.34 100 0.0
SS 1.301 None 0.000005

5. Optimum Design of Sandwich Panel

Now, we show one application of NGSA to sandwich
panel structure shown in Fig. 10. This structure consists of
two thin skins (or faces) of thickness t, each separated by a
thick layer (or core) of low density material of thickness c.
All three layers are firmly bonded together and the face
material is much stiffer than the core material. It is assumed
that the face and core materials are both isotropic.

4
¢ T

W
v

Fig. 10 Dimensions of sandwich panel

The objective is to find a feasible combination of design
variables so that the weight function is minimised. The
design variables in this model are the thickness of faces (t)
and core (c). For notational convenience we redefine these
two variables in terms of the design vector X:

X=[x,,x]7=[¢tc]" @

The optimum design of this model is the combined
minimum weight of the faces and core (per unit area). The

objective function is
F(x) =10Q2p,+ 2, + ¢+ %) @

The p, and ., are the densities of the faces and core

materials respectively. The faces are assumed to be very
thin; it is therefore in order to take c as the core thickness
and to neglect the local bending stiffnesses of the faces.
The E-glass Woven Roving and Divinycell (H100) are
adopted for faces and core material in this design model,
respectively. Table 7 is the mechanical properties of these
two materials. The length and width of sandwich panel are
6%0cm and 230cm, respectively. The allowable deflection
(w,y) In z-direction is set at 2.3cm.

There are several functional relationships between the
design variables which delimit the region of feasibility.
These relationships, expressed in the form of inequalities,
represent the design model. The inequality constraints are,

g(x)=x,—0.0125

g(x)= ;C_ZI_O.OI

gs(x>=o.0143—j§—21 &)
_ War
g4(9€)— w 1.0
_ Oaur
gg(x) = g, 1.0
g0 =—"~1.0
yz
where,

w : Maximum deflection in z-direction (cm)

0,y ¢ Allowable bending stress of faces (kg/cm)
0, : Bending stress in y-direction of faces (kg/cm’)
7, ¢ Allowable shear stress of core (kg/cm’)

7,, : Shear stress in yz-plane of core (kg/ cny’)

The structural analysis and design of sandwich panel is
fully described in Allen (1969) and Kim et al. (1991). Kim et
al. (1991) solved this problem using SUMTNM (SUMT with
Nedler and Mead simplex search method) to minimise
weight function. The same parameters are adopted for the
proposed BGSA to compare the optimal simulation results.
The simulation results between the pGSA and SUMTNM are
listed in Table 8.

In computations of the pGSA, the total number of trial
iterations is 1.0x10°. The NGSA implementation has better
improvement of about 0.12 % than SUMINM approach in
optimal weight. Fig. 11 shows the evolution process as the
best-so-far fitness of the weight function. As can be seen in
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Fig. 11, the uGSA approach performed a rapid convergence
tendency to global optimum solution-space.

Table 7 Mechanical properties of faces and core material

Face : E-glass Woven Roving

O it E, density Poisson’s ratio
884.0 183600.0 26 013
Core : Divinycell (H100)
T E, density Poisson’s ratio G,
5086 1008.526 01 01 458.421

E, E_ the modulus of elasticity of faces and core,

G, is the shear modulus of core.

Table 8 Simulation results between UGSA and SUMTNM

x1 x2 F(x)
BGSA 0.1573 16.6821 24.8811
SUMTNM 0.1639 16.388 24,9104
24.8835
24.88301
@
2 24.8825]
= Best Trials = 34,085
© Best Fitness = 24.8811
1 24.88201
Q
¢
3 24.8815]
m A
24.88101 °

00 20x16 4.0x16 6.0x10 8.0x16 1.0x16
Number of Trials

Fig. 11 Evolufion process as the best-so-far fitness

6. Concluding Remarks

nonlinear
optimisation problems is proposed and developed with the

A new approach to solve continuous
help of some of metaheuristics introduced in this article. The
MGSA approach is an abstraction of natural genetics and
theoretical physics and is aimed to search global optimum
solution space in global optimisation problems. Therefore, n
GSA  approach

convergence and search for better global solution, because of

can help in avoiding the premature

its wide spread applicability, global perspective, and inherent
parallelism.

From the simulation results of Tables 2-6, it was shown
that the pGSA  implementation performed a
convergence tendency than the other approaches,
reached the global optimum solution for all test functions.
That is, the nGSA achieved near-zero gap from the global
minimum for all benchmark functions. This implies that the
UGSA has a higher probability of obtaining the global
optimum. Moreover, the results of the BGSA approach also

rapid
and

converged to global optimum solution with a marvellous
explorability in application of structural sandwich panel.
Therefore, it is concluded that the proposed NGSA is both
efficient and effective in identifying a global optimum
solution.

Consequently, the new approach, using micro-genetic
algorithms and simulated amnealing, can be suggested as
useful tool for solving nonlinear global optimisation
problems.
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Appendix: Benchmark Test Functions

In order to compare the various approaches, the following
five test functions are selected from the specialised literature
(Trafalis and Kasap, 2002) for benchmark test.

Function 1 (Two-dimensional): Goldstein and Price’s function
with a search domain, X; =[z2,+2]Vi. The global objective
function value is equal to 3.0 and the minimum point is
(0.0, -1.0). There are four local minima in the solution-space.

Ay ={14 (o, + 2, +1)?% - (19— 14x, + 3x3— 14, + 6x, x, + 3x3)}
- {30 + (2%, —3x)% - (18 — 322, + 124% + 48x, — 36,2, + 2743)}

Function 2 (Two-dimensional): 6-Hump Camelback function
with a search domain, X; [5,+5]V. The global objective
function value is equal to -1.031628 at (-0.0899, 0.7128) or
(0.0899, -0.7128). This function has 6 local minima and 2
global minima in the solution-space.

4
f)=(U—2.142+ %)le + 2,200 — 4(1 — x3)%

Function 3 (Two-dimensional): Shubert function with a
search domain, X, =[+20,+20]V:. This function has more
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than 760 local minima and more than 18 global minima with
an objective function value of -186.7309.

f(x)={ zifli- cos[ (i+ 1)x1+i]] . { lZi]li- cos[ (i+ 1)x2+i]]

Function 4 (Two-dimensional): Himmelblau's function with a
search domain, X; [46,+6]Vi. There are four global
minima with an objective function value of 0.

Ax) = (22 + 2, — 112+ (2, + 22— 7)°

Function 5 (Four-dimensional): Branin’s function with a
search domain, X, [:20,+20]V:. This function has more
than 3 local and global minima with an objective function
value of 0.397887.

5.122  5x
Ax)=(x,— 4”21 + n,l —6)2+10(1—é)cosx1+10
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