• Title/Summary/Keyword: T2 Relaxation time

Search Result 136, Processing Time 0.027 seconds

Evaluation of Optimal Combination of Commercially Available Superparamagnetic Iron Oxide Nanoparticles and Transfection Agents for Labelling of Human Mesenchymal Stem Cells (인체 중간엽 줄기세포의 표지를 위한 상용화 된 Superparamagnetic Iron Oxide Nanoparticle과 Tansfection Agent의 적절한 병용을 위한 연구)

  • Kim, Sung-Hun;Oh, Soon-Nam;Park, Youn-Hee;Kang, Won-Kyung;Ahn, Kook-Jin;Chung, Soo-Kyo
    • Investigative Magnetic Resonance Imaging
    • /
    • v.16 no.1
    • /
    • pp.31-39
    • /
    • 2012
  • Purpose : To determine the optimal combination of commercially available superparamagnetic iron oxide (SPIO) nanoparticles with transfection agents (TA). Materials and Methods: Protamine sulfate (Pro) and poly-L-lysin (PLL) were incubated with ferumoxide and ferucarbotran in human mesenchymal stem cells at various concentrations, and cellular viability were evaluated. Cellular iron uptake was qualitatively and quantitatively evaluated. Cell visibility was assessed via MR imaging and the T2-relaxation time was calculated. Results: The cellular viabilities with ferucarbotran were more significantly decreased than those with ferumoxide (p < 0.05). Iron uptake with ferumoxide was significantly higher than that for those with with ferucarbotran. The T2-relaxation time was observed to be shorter with ferumoxide in comparison to those with ferucarbotran (p < 0.05). Ferumoxide at a concentration of 25 ${\mu}g$/ml in combination with either Pro or PLL at a concentration of 3.0 ${\mu}g$/ml did not adversely impact cell viability, maximized iron uptake, and exhibited a lower T2-relaxation time in comparison to other combinations. Conclusion: Stem cells with ferumoxide exhibited a higher cellular viability and iron uptake in comparison to ferucarbotran-treated stem cells. A 25 ${\mu}g$/ml of ferumoxide with a 3.0 ${\mu}g$/ml of TA is sufficient to label mesenchymal stem cells.

Thermodynamic properties and structural geometry of KMgCl3·6H2O single crystals

  • Yoon, Hyo In;Lim, Ae Ran
    • Journal of the Korean Magnetic Resonance Society
    • /
    • v.19 no.3
    • /
    • pp.119-123
    • /
    • 2015
  • The thermodynamic properties and structural geometry of $KMgCl_3{\cdot}6H_2O$ were investigated using thermogravimetric analysis, differential scanning calorimetry, and nuclear magnetic resonance. The initial mass loss occurs around 351 K ($=T_d$), which is interpreted as the onset of partial thermal decomposition. Phase transition temperatures were found at 435 K ($=T_{C1}$) and 481 K ($=T_{C2}$). The temperature dependences of the spin-lattice relaxation time $T_1$ for the $^1H$ nucleus changes abruptly near $T_{C1}$. These changes are associated with changes in the geometry of the arrangement of octahedral water molecules.

Under-Relaxed Image Restorative Technique for $Na^{23}$ MRI

  • Ro, D.W.;Ahn, C.B.
    • Proceedings of the KOSOMBE Conference
    • /
    • v.1992 no.05
    • /
    • pp.64-67
    • /
    • 1992
  • To improve signal-to-noise ratio in sodium image, short echo time (2-3 ms) and long data acquisition (10-20 ms) protocols are used. Sodium in biological specimens demonstrates a bi-exponential decay of transverse magnetization and the fast decaying component of the sodium signal results in the reconstruction of images which are blurred significantly. The spatially-dependent nature of the blurs are due mainly to the presence of short local transverse relaxation values (0.7-3 ms) of sodium in tissue. We present an algorithm that corrects for object-dependent blurs due to fast-decaying T2 and improves the computational behavior of the algorithm by incorporating a relaxation parameter into the iterative process.

  • PDF

Quantitative Evaluation of Liver Fibrosis on T1 Relaxometry in Comparison with Fibroscan (Fibroscan과 비교를 통한 T1 MR Relaxometry를 이용한 간섬유화의 정량적 평가)

  • Byeong Hak Sim;Suk Hee Heo;Sang Soo Shin;Seong Beom Cho;Yong Yeon Jeong
    • Journal of the Korean Society of Radiology
    • /
    • v.81 no.2
    • /
    • pp.365-378
    • /
    • 2020
  • Purpose This study was performed to determine whether the T1 relaxation time of gadoxetic acid-enhanced liver MR imaging is useful for detecting and staging liver fibrosis in patients with chronic liver disease. Materials and Methods One hundred and three patients with suspected focal liver lesion underwent MR imaging and Fibroscan. Fibroscan was chosen as the reference standard for classifying liver fibrosis. T1 relaxation times were acquired before (preT1), 20 minutes after (postT1) contrast administration, and reduction rate of T1 relaxation time (rrT1) on transverse 3D VIBE (volumetric interpolated breath-hold examination) sequence using 3T MR imaging. The optimal cut-off values for the fibrosis staging were determined with ROC analysis. Results PreT1 and postT1 increased and rrT1 decreased constantly with increasing severity of liver fibrosis according to the METAVIR score (F0-F4). There were statistically significant differences between F2 and F3 in preT1 (F2, 836.0 ± 74.7 ms; F3, 888.6 ± 77.5 ms, p < 0.05) and between F3 and F4 in postT1 (F3, 309.0 ± 80.2 ms; F4, 406.6 ± 147.7 ms, p < 0.05) and rrT1 (F3, 65.4 ± 7.7%; F4, 57.3 ± 11.4%, p < 0.05). ROC analysis revealed that combination test (preT1 + postT1) was the best test for predicting liver fibrosis. Conclusion PreT1 and postT1 increased constantly with increasing severity of liver fibrosis. T1 mapping in gadoxetic acid-enhanced liver MR imaging could be a helpful complementary sequence to determine the liver fibrosis stage.

CAVITY FORMATION IN INTERFACE BETWEEN POWER LAW CREEP PARTICLE AND ELASTIC MATRIX SUBJECTED TO A UNIAXIAL STRESS

  • Lee, Yong-Sun;Ha, Young-Min;Hwang, Su-Chul
    • Journal of Theoretical and Applied Mechanics
    • /
    • v.1 no.1
    • /
    • pp.69-88
    • /
    • 1995
  • The paper attempts to estimate the incubation time of a cavity in the interface between a power law creep particle and an elastic matrix subjected to a uniaxial stress. Since the power law creep particle is time dependent, the stresses in the interface relax. Through previous stress analysis related to the present physical model, the relaxation time is defined by ${\alpha}$2 which satisfies the equation $\Gamma$0 |1+${\alpha}$2k|m=1-${\alpha}$2 [19]. $\Gamma$0=2(1/√3)1+m($\sigma$$\infty$/2${\mu}$)m($\sigma$0/$\sigma$$\infty$tm) where $\sigma$$\infty$ is an applied stress, ${\mu}$ is a shear modulus of a matrix, $\sigma$$\infty$ is a material constant of a power law particle, $\sigma$=$\sigma$0 $\varepsilon$ and t elapsed time. the volume free energy associated with Helmholtz free energy includes strain energies associated with Helmholtz free energy includes strain energies caused by applied stress anddislocations piled up in interface (DPI). The energy due to DPI is found by modifying the results of Dundurs and Mura[20]. The volume free energies caused by both applied stress and DPI are a function of the cavity size(${\gamma}$) and elapsed time(t) and arise from stress relaxation in the interface. Critical radius ${\gamma}$ and incubation time t to maximize Helmholtz free energy is found in present analysis. Also, kinetics of cavity fourmation are investigated using the results obtained by Riede[16]. The incubation time is defied in the analysis as the time required to satisfy both the thermodynamic and kinetic conditions. Through the analysis it is found that [1] strain energy caused by the applied stress does not contribute significantly to the thermodynamic and kinetic conditions of a cavity formation, 2) in order to satisfy both thermodynamic and kinetic conditions, critical radius ${\gamma}$ decreases or holds constant with increase of time until the kinetic condition(eq.40) is satisfied. Therefore the cavity may not grow right after it is formed, as postulated by Harris[11], and Ishida and Mclean[12], 3) the effects of strain rate exponent (m), material constant $\sigma$0, volume fraction of the particle to matrix(f) and particle size on the incubation time are estimated using material constants of the copper as matrix.

$^{13}C$ Nuclear Magnetic Resonance Study of Graphite Intercalated Superconductor $CaC_6$ Crystals in the Normal State ($CaC_6$ 결정에 대한 정상상태에서의 $^{13}C$ 핵자기공명 측정)

  • Kim, Sung-Hoon;Kang, Ki-Hyeok;Mean, B.J.;Ndiaye, B.;Lee, Moo-Hee;Kim, Jun-Sung
    • Progress in Superconductivity
    • /
    • v.12 no.1
    • /
    • pp.51-56
    • /
    • 2010
  • $^{13}C$ NMR (nuclear magnetic resonance) measurements have been performed to investigate the local electronic structure of a superconducting graphite intercalation compound $CaC_6$ ($T_c$ = 11.4 K). A large number of single crystals were stacked and sealed in a quartz tube for naturally abundant $^{13}C$ NMR. The spectrum, Knight shift, linewidth, and spin-lattice relaxation time $T_1$ were measured in the normal state as a function of temperature down to 80 K at 8.0 T perpendicular to the c-axis. The $^{13}C$ NMR spectrum shows a single narrow peak with a very small Knight shift. The Knight shift and the linewidth of the $^{13}C$ NMR are temperature-independent around, respectively, +0.012% and 1.2 kHz. The spin-lattice relaxation rate, $1/T_1$, is proportional to temperature confirming a Korringa behavior as for non-magnetic metals. The Korringa product is measured to be $T_1T\;=\;210\;s{\cdot}K$. From this value, the Korringa ratio is deduced to be $\xi$ = 0.73, close to unity, which suggests that the independent-electron description works well for $CaC_6$, without complications arising from correlation and many-body effects.

The Ability of Muscle Functional MRI to Detect the Slight Effect of Exercise on Trunk Muscle Activity

  • Tawara, Noriyuki
    • Investigative Magnetic Resonance Imaging
    • /
    • v.26 no.2
    • /
    • pp.117-124
    • /
    • 2022
  • Purpose: In this study, we provide a way to assess even a slight effect of exercise on trunk-muscle activity. Materials and Methods: Seven healthy male participants (mean age, 24.7 ± 3.2 years; height, 171.2 ± 9.8 cm; and weight, 63.8 ± 11.9 kg) performed 15 sets of an exercise with 20 repetitions of 90° hip and right-knee flexion while lying supine. The exercise intensity was measured using the 10-point Rating of Perceived Exertion Scale after the first and 15th sets of exercises. Although cross-sectional areas and functional T2 mapping using ultrafast imaging (fast-acquired muscle functional magnetic resonance imaging, fast-mfMRI) have been proposed for imaging to evaluate exercise-induced muscle activity in real time, no previous studies have reported on the evaluation of trunk-muscle activity using functional T2 mapping. As a method for assessing trunk-muscle activity, we compared functional T2 mapping using ultrafast imaging (fast-mfMRI) with cross-sectional areas. Results: Although the muscle cross-sectional areas were increased by the exercise, there was no significant difference at rest. On the other hand, for all sets, the changes in T2 were significant compared with those at rest (P < 0.01). These results demonstrate that T2, calculated from fast-mfMRI images can be used to detect even a small amount of muscle activity induced by acute exercise, which was impossible to do with cross-sectional areas. Conclusion: Fast-mfMRI, which can also display functional information with detailed forms, enabled non-invasive real-time imaging for identifying and evaluating the degree of deep trunk-muscle activity induced by exercise.

Characteristics of HTS SQUID-based Susceptometer

  • Timofeev, V.P;Kim, C.G;Shnyrkov, V.I
    • Journal of Magnetics
    • /
    • v.3 no.3
    • /
    • pp.82-85
    • /
    • 1998
  • A portable HTS RF SQUID-based system, weighing less than 20 kg has been built for susceptometry applications in weak magnetic fields, It includes a YBCO sensor for measuring the axial magnetic field component with a resolution of about $7{\times}10^{-13} T/Hz^{1/2}.$ This is determined by the intrinsic magnetic noise in the quasi-white noise region. There is a relaxation for a sudden increase in field due to magnetic flux creep in HTS. In this instance the time did not exceed 3~5 minutes.

  • PDF

The Effect of Number of Echoes and Random Noise on T2 Relaxography : Development of 8-Echo CPMG (에코의 개수와 임의 잡음이 T2 이완영상의 구성에 미치는 영향연구 : 8에코 CPMG영상화 펄스열의 개발)

  • 정은기
    • Investigative Magnetic Resonance Imaging
    • /
    • v.2 no.1
    • /
    • pp.67-72
    • /
    • 1998
  • The mapping of the spin-spin relaxation time T2 in pixel-by-pixel was suggested as a quantitative diagnostic tool in medicine. although the CPMG pulse sequence has been known to be the best pulse sequence for T2 measurement in physics NMR, the supplied pulse sequence by the manufacture of MRI system was able to obtain the maximum of 4 CPMG images. Eight or more images with different echo time TEs are required to construct a reliable T2 map, so that two or more acquisitions were required, which easily took more than 10 minutes. 4-echo CPMG imaging pulse sequence was modified to generate the maximum of 8 MR images with evenly spaced echo time TEs. In human MR imaging, since patients tend to move at least several pixels between the different acquisitions, 8-echo CPMG imaging sequence reduces the acquisition time and may remove any mis-regitration of each pixels signal for the fitting of T2. The resultant T2 maps using the theoretically simulated images and using the MR images of the human brain suggested that 8 echo CPMG sequence with short echo spacing such as 17-20 msec can give the reliable T2 map.

  • PDF

Determination of Correlation Times of New Paramagnetic Gadolinium MR Contrast Agents by EPR and 17O NMR

  • Kim, Hee-Kyung;Lee, Gang-Ho;Kim, Tae-Jeong;Chang, Yong-Min
    • Bulletin of the Korean Chemical Society
    • /
    • v.30 no.4
    • /
    • pp.849-852
    • /
    • 2009
  • The work describes EPR and 17O NMR measurements followed by theoretical calculation of the rotational correlation time $({\tau}_R)$, the water residence time $({\tau}_m)$, and the longitudinal electronic spin relaxation time $(T_{le})$(T_1e) for two new gadolinium complexes 1 and 2 of the type [$Gd(L)(H_2O)$] (L = tranexamic esters) in order to investigate their efficiency as a paramagnetic contrast agent (PCA). Of three correlation times, τR plays a major and predominant role to the unusually high relaxivity of 1 and 2 as compared with that of clinically approved MR CAs such as [$Gd(DTPA)(H_2O)]2‐ (Magnevist${\circledR}$), [Gd(DTPA-BMA)(H2O)] (Omniscan${\circledR}$), and $[Gd(DOTA)(H_2O)]^-$ (Dotarem${\circledR}$). The presence of bulky tranexamic ester in the ligand seems to be responsible for the conformational rigidity, which in turn causes such great an increase in ${\tau}_R$.