• Title/Summary/Keyword: T-pipe

Search Result 397, Processing Time 0.028 seconds

A Study on the Safety of TBP(150A) with Forming Analysis and Strength Test (성형해석 및 강도실험을 통한 분기배관(150A)의 안전성에 관한 연구)

  • Lee, Sung-Ho;Kim, Hei-Song
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.32 no.7
    • /
    • pp.610-616
    • /
    • 2008
  • For this study, the forming analyses and body strength tests of TBP were performed on the main pipe size 150A(KS D3507, KS D 3576 10S). The branched pipe sizes utilized were 25A, 32A, 40A, 50A, 65A, 80A, 100A and 125A. A general FEM program, ABAQUS, was used as the forming analyses method of TBP. Using the results, the strength of TBP was then tested in order to determine the safety of TBP when the working pressure was applied. The results indicate that TBP may be safely used in water-based fire protection pipe systems in terms of the strength.

Development of Agricultural Hydraulic Structure for Water Collecting and Draining (집.배수용 농업수리시설물 개발)

  • 성찬용;연규석;류능환;김기성;민정기
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.43 no.2
    • /
    • pp.105-111
    • /
    • 2001
  • This study is performed to develop an agricultural hydraulic structure for collecting and draining pipe using polymer concrete. The water permeability of collecting and draining pipe shows an 5.917$\ell$/$\textrm{cm}^2$/h, it is more 190 times as large as in the world maximum rainfall. The external pressure on the collecting and draining pipe is in the range of 1.85~5.25tf/m under 2-edge test, 2.6~6.2tf/m under sand mat and the vertical displacement is in the range of 0.48~1.06mm, 1.01~1.89mm, respectively. Also, an increasing rate of external pressure on the developed pipe is higher than that of PVC pipe to the variation of t/D. Accordingly, the pipe developed in this study will be used widely in agricultural hydraulic structures such as collecting and draining structure.

  • PDF

Development of Flat Plate Heat Pipe Using Screen Meshes (스크린 메쉬를 이용한 판형 히트 파이프의 개발)

  • Lee, Yong-Duck;Hong, Young-Ho;Kim, Hyun-Tae;Kim, Ku-Young
    • Proceedings of the KSME Conference
    • /
    • 2003.04a
    • /
    • pp.1506-1511
    • /
    • 2003
  • The present study proposes a new structure for a flat plate heat pipe which could embody a thin thickness, any shapes and high heat density a unit area. It is on the structure for the formation of vapor passages and the support of the case of the flat plate heat pipe. A screen mesh is used as the one. To verify the validity of the one, the flat plate heat pipe of 1.08mm thickness was made with a layer of the screen mesh with 14 and 100 mesh number respectively and tested. Here the screen mesh with 14 mesh number plays a role of the vapor passage and the support of the case and the screen mesh with 100 mesh number functions as the wick structure. T he results show that the screen mesh excellently carries out the function of the vapor passage and the support of the case.

  • PDF

Remediation of buried pipeline system subject to ground rupture using low-density backfill (경량채움재를 활용한 지반영구변위에 대한 지중관 시스템의 개량기법)

  • Choo, Yun-Wook;Abdoun, T.H.;O'Rourke, M.J.;Ha, D.
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.03a
    • /
    • pp.553-562
    • /
    • 2008
  • A remediation technique for buried pipeline system subject to permanent ground deformation is proposed. Specifically, EPS (expanded polystyrene) geofoam blocks are used as low density backfill, thereby reducing soil restraint and pipeline strains. In order to evaluate this remediation technique, a series of 12 centrifuge model tests with HDPE pipe were performed. The amount or spatial extent of the low density backfill was varied, as well as the orientation of the pipe with respect to the fault offset. Specifically, in the $-63.5^{\circ}$ test, the orientation was such that the pipe was placed in flexure and axial tension. The $-85^{\circ}$ orientation placed the pipe mainly in flexure. In all cases, the behavior of the remediated pipe was compared to that for the unremediated pipe. The geofoam backfill was successful in improving pipe behavior for two of the three pipe/fault orientations. However, for the $60^{\circ}$ orientation, the pipe buckled in compression irrespective of the geofoam backfill.

  • PDF

Estimation of Pull-out Behavior for Steel Pile Nailing installed Foldable Wedge by Field Measurement (현장계측에 의한 접이식 웨지 장착 강관네일의 인발거동 평가)

  • Kwon, Kyo-Keun;Choi, Bong-Hyuck;Kim, Kyung-Min
    • Journal of the Korean Geosynthetics Society
    • /
    • v.8 no.4
    • /
    • pp.19-25
    • /
    • 2009
  • In this study, field pull-out tests were performed for steel pipe nailing installed foldable wedge and non-wedge type steel pipe nailing under the same test conditions. This is to evaluate pull-out resistance improvement effect of steel pipe nailing installed foldable wedge. Evaluating for field pull-out characteristics of steel pipe nailing installed foldable wedge was performed through analysis of ultimate pull-out resistance ($T_L$), ultimate unit skin friction ($q_s$, $u_{max}$), tensile normal stiffness ($K_{\beta}$), tension of nail. As a result, the steel pipe nailing installed foldable wedge have an effect of pull-out resistance increased about 30% in comparison with non-wedge type steel pipe nailing.

  • PDF

Crack Opening Area Assessment of Circumferential Though Wall Crack in a Pipe Subjected to Tension and Bending (인장과 굽힘을 받는 배관의 원주방향 관통균열 개구면적 평가)

  • Kim, Sang-Cheol;Kim, Maan-Won
    • Journal of the Korean Society of Safety
    • /
    • v.23 no.5
    • /
    • pp.61-66
    • /
    • 2008
  • It is important to calculate the exact crack opening area in the cracked pipe subjected to axial force and bending moment. Among many solutions for obtaining the crack opening displacement, Paris-Tada's expression, which is derived from energy method, is open used in fracture analysis for piping crack problems because of its simplicity. But Paris-Tada's equation has conservativeness when radius over thickness ratio(R/t) is ten or less, for it is based on the stress intensity factor solution having a compliance function derived from a simple shell theory. In this paper we derived a new expression using a different stress intensity factor solution which is able to consider the variation of compliance through wall thickness in a cracked pipe. Conservativeness of both equations was examined and compared to finite element analysis results. Conservativeness of the new equation is decreased when R/t > 10 and increased slightly when R/t < 10 compared with Paris-Tada's. But Both equations were highly conservative when R/t < 10 compared with finite element analysis results.

Seismic Fragility of Steel Piping System Based on Pipe Size, Coupling Type, and Wall Thickness

  • Ju, Bu Seog;Gupta, Abhinav;Ryu, Yonghee
    • International journal of steel structures
    • /
    • v.18 no.4
    • /
    • pp.1200-1209
    • /
    • 2018
  • In this study, a probabilistic framework of the damage assessment of pipelines subjected to extreme hazard scenario was developed to mitigate the risk and enhance design reliability. Nonlinear 3D finite element models of T-joint systems were developed based on experimental tests with respect to leakage detection of black iron piping systems, and a damage assessment analysis of the vulnerability of their components according to nominal pipe size, coupling type, and wall thickness under seismic wave propagations was performed. The analysis results showed the 2-inch schedule 40 threaded T-joint system to be more fragile than the others with respect to the nominal pipe sizes. As for the coupling types, the data indicated that the probability of failure of the threaded T-joint coupling was significantly higher than that of the grooved type. Finally, the seismic capacity of the schedule 40 wall thickness was weaker than that of schedule 10 in the 4-inch grooved coupling, due to the difference in the prohibition of energy dissipation. Therefore, this assessment can contribute to the damage detection and financial losses due to failure of the joint piping system in a liquid pipeline, prior to the decision-making.

A Study of the Surface Temperature Reduction Using Pipe Cooling System in Asphalt Pavement (아스팔트 도로포장에 물순환 파이프 시스템을 이용한 표면온도저감에 관한 연구)

  • Yoon, Yong Kyu;Park, Kyung Won;Lee, Suk Keun
    • International Journal of Highway Engineering
    • /
    • v.15 no.1
    • /
    • pp.75-86
    • /
    • 2013
  • PURPOSES: The purpose of asphalt pavement reducing surface temperature by using Pipe cooling system is to make pleasant city life environment. METHODS: We considered building condition to lay the pipes under asphalt pavement and figured out that temperature reducing effect with pipe cooling system. In addition, we guessed rutting through wheel tracking test with a laid the pipes under asphalt mixture and performed fatigue cracking through a flexural fatigue test for performance evaluation of pipe cooling system. RESULTS: When pipe cooling system worked, the temperature of pavement model reduced quickly in test. The system can turn down the degree by 4 or 5 quickly as well. It didn't affect rutting to lay the pipes under the pavement, but it can get damaged to asphalt pavement in early stage by the result of performance evaluation. CONCLUSIONS: We figured out that pipe cooling system can turn down the temperature of aspalt pavement surface through tests. We suggest that pipe cooling system should be considered one of the effective way to solve urban heat island problem.