• Title/Summary/Keyword: T-matrix approach

Search Result 118, Processing Time 0.031 seconds

Takagi-Sugeno Fuzzy Model-Based Iterative Learning Control Systems: A Two-Dimensional System Theory Approach (Takagi-Sugeno 퍼지모델에 기반한 반복학습제어 시스템: 이차원 시스템이론을 이용한 접근방법)

  • Chu, Jun-Uk;Lee, Yun-Jung;Park, Bong-Yeol
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.5
    • /
    • pp.385-392
    • /
    • 2002
  • This paper introduces a new approach to analysis of error convergence for a class of iterative teaming control systems. Firstly, a nonlinear plant is represented using a Takagi-Sugeno(T-S) fuzzy model. Then each iterative learning controller is designed for each linear plant in the T-S fuzzy model. From the view point of two-dimensional(2-D) system theory, we transform the proposed learning systems to a 2-D error equation, which is also established if the form of T-S fuzzy model. We analyze the error convergence in the sense of induced L$_2$-norm, where the effects of disturbances and initial conditions on 2-D error are considered. The iterative teaming controller design problem to guarantee the error convergence can be reduced to the linear matrix inequality problem. This method provides a systematic design procedure for iterative teaming controller. A simulation example is given to illustrate the validity of the proposed method.

A study on kinematics and inverse kinematics of industrial FANUC robot (산업용 FANUC robot의 kinematics와 inverse kinematics에 대한 연구)

  • 박형준;한덕수;이쾌희
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.551-556
    • /
    • 1991
  • This paper deal with the solution of kinematics and inverse kinematics of industrial FANUC robot by the bisection method with IBM PC 386. The inverse kinematics of FANUC robot cannot be solved by the algebraical method, because arm matrix T$_{6}$ is very complex and 6-joint angles are associated with the position and the approach of end-effector. Instead we found other 5-joint angle by an algebraical method after finding .theta.$_{4}$ value by a bisection method.d.

  • PDF

A Study for Spectral Properties of Preconditioner of Symmetric Toeplitz Systems (대칭 토플리츠 시스템의 선행조건에 대한 특정성질 연구)

  • Baik, Ran
    • Journal of Digital Contents Society
    • /
    • v.10 no.4
    • /
    • pp.579-585
    • /
    • 2009
  • In [9], Tyrtshnikov proposed a preconditioned approach to derive a general solution from a Toeplitz linear system. Furthermore, the process of selecting a preconditioner matrix from symmetric Toeplitz matrix, which has been used in previous studies, is introduced. This research introduces a new method for finding the preconditioner in a Toeplitz system. Also, through analyzing these preconditioners, it is derived that eigenvalues of a symmetric Toeplitz are very close to eigenvalues of a new preconditioner for T. It is shown that if the spectrum of the preconditioned system $C_0^{-1}T$ is clustered around 1, then the convergence rate of the preconditioned system is superlinear. From these results, it is determined to get the superliner at the convergence rate by our good preconditioner $C_0$. Moreover, an advantage is driven by increasing various applications i. e. image processing, signal processing, etc. in this study from the proposed preconditioners for Toeplitz matrices. Another characteristic, which this research holds, is that the preconditioner retains the properties of the Toeplitz matrix.

  • PDF

ERROR REDUCTION FOR HIGHER DERIVATIVES OF CHEBYSHEV COLLOCATION METHOD USING PRECONDITIONSING AND DOMAIN DECOMPOSITION

  • Darvishi, M.T.;Ghoreishi, F.
    • Journal of applied mathematics & informatics
    • /
    • v.6 no.2
    • /
    • pp.523-538
    • /
    • 1999
  • A new preconditioning method is investigated to reduce the roundoff error in computing derivatives using Chebyshev col-location methods(CCM). Using this preconditioning causes ration of roundoff error of preconditioning method and CCm becomes small when N gets large. Also for accuracy enhancement of differentiation we use a domain decomposition approach. Error analysis shows that for this domain decomposition method error reduces proportional to the length of subintervals. Numerical results show that using domain decomposition and preconditioning simultaneously gives super accu-rate approximate values for first derivative of the function and good approximate values for moderately high derivatives.

Sliding Mode Observer for Uncertain Fuzzy System: An LMI Approach (LMI를 이용한 불확실한 퍼지 시스템의 슬라이딩 모드 관측기 설계)

  • Song Min-Guk;Ju Yeong-Hun;Park Jin-Bae
    • Proceedings of the Korean Institute of Intelligent Systems Conference
    • /
    • 2006.05a
    • /
    • pp.159-163
    • /
    • 2006
  • 본 논문에서는 비선형 시스템의 슬라이딩 모드 관측기 설계에 대해서 논의한다. 제어 대상인 비선형 시스템을 모델링 하는데 있어서 Takagi-Sugeno(T-S) 퍼지 모델 기법을 이용하였고, 이 때 발생할 수 있는 모델 불확실성과 외란에 대해 그것의 최대 최소 범위를 안다고 가정하였다. 제안된 시스템의 LMI (Linear Matrix Inequality)를 기반으로 한 슬라이딩 모드 관측기 설계 방법에서는 관측기와 시스템의 차이를 슬라이딩 표면으로 설정한다. 안정한 슬라이딩 표면을 갖는 슬라이딩 관측기의 존재 가능성을 선형 행렬 부등식의 형태로 표현한다. 슬라이딩 모드 관측기 이득은 LMI 존재 조건의 해를 이용하여 구한다.

  • PDF

Stabilization for Markovian Jump Nonlinear Systems with Time-Delay via T-S Fuzzy Control (시간 지연을 가지는 비선형 마르코비안 점프 시스템의 퍼지 제어)

  • Song, Min-Kook;Park, Jin-Bae;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2008.10b
    • /
    • pp.235-236
    • /
    • 2008
  • This paper is concerned with the stabilization problem of Markovian jump nonlinear systems with time-delay via Takagi-Sugeno (T-S) fuzzy control approach. The T-S fuzzy models are employed to represent nonlinear systems with Markovian jump parameters and time-delay. The purpose of this paper is to design a mode-independent fuzzy controller such that the closed-loop Markovian jump fuzzy system is stochastically stable. Based on a stochstic Lyapunov function, stabilization sufficient conditions using a mode-independent fuzzy controller are derived for the Markovian jump fuzzy system in terms of Linear Matrix Inequalities (LMIs). Finally, a simulation example is presented to illustrate the effectiveness of the proposed method.

  • PDF

An improved Kalman filter for joint estimation of structural states and unknown loadings

  • He, Jia;Zhang, Xiaoxiong;Dai, Naxin
    • Smart Structures and Systems
    • /
    • v.24 no.2
    • /
    • pp.209-221
    • /
    • 2019
  • The classical Kalman filter (KF) provides a practical and efficient way for state estimation. It is, however, not applicable when the external excitations applied to the structures are unknown. Moreover, it is known the classical KF is only suitable for linear systems and can't handle the nonlinear cases. The aim of this paper is to extend the classical KF approach to circumvent the aforementioned limitations for the joint estimation of structural states and the unknown inputs. On the basis of the scheme of the classical KF, analytical recursive solution of an improved KF approach is derived and presented. A revised form of observation equation is obtained basing on a projection matrix. The structural states and the unknown inputs are then simultaneously estimated with limited measurements in linear or nonlinear systems. The efficiency and accuracy of the proposed approach is verified via a five-story shear building, a simply supported beam, and three sorts of nonlinear hysteretic structures. The shaking table tests of a five-story building structure are also employed for the validation of the robustness of the proposed approach. Numerical and experimental results show that the proposed approach can not only satisfactorily estimate structural states, but also identify unknown loadings with acceptable accuracy for both linear and nonlinear systems.

Sampled-data Fuzzy Control for Nonlinear Neutral Systems (샘플치 퍼지 제어기 설계를 이용한 비선형 뉴트럴 시스템 제어기 설계)

  • Song, Min-Kook;Joo, Young-Hoon;Park, Jin-Bae
    • Proceedings of the KIEE Conference
    • /
    • 2008.04a
    • /
    • pp.195-196
    • /
    • 2008
  • This paper presents the stability analysis and design for a sampled-data fuzzy control system with neutral type of time delay. The sampling activity and neutral type of time delay will complicate the nonlinear system dynamics. And it make the stability analysis much more difficult than that for a continuous-time fuzzy control system. Based on the fuzzy control approach, linear matrix inequality (LMI)-based stability conditions are derived to guarantee the neutral T-S fuzzy system stability. Finally, an example is provided to illustrate the effectiveness of the proposed approach.

  • PDF

High Performance of Self Scheduled Linear Parameter Varying Control with Flux Observer of Induction Motor

  • Khamari, Dalila;Makouf, Abdesslam;Drid, Said;Chrifi-Alaoui, Larbi
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.5
    • /
    • pp.1202-1211
    • /
    • 2013
  • This paper deals with a robust controller for an induction motor (IM) which is represented as a linear parameter varying systems. To do so linear matrix inequality (LMI) based approach and robust Lyapunov feedback are associated. This approach is related to the fact that the synthesis of a linear parameter varying (LPV) feedback controller for the inner loop take into account rotor resistance and mechanical speed as varying parameter. An LPV flux observer is also synthesized to estimate rotor flux providing reference to cited above regulator. The induction motor is described as a polytopic LPV system because of speed and rotor resistance affine dependence. Their values can be estimated on line during systems operations. The simulation and experimental results largely confirm the effectiveness of the proposed control.

Intelligent Digital Redesign of Uncertain Nonlinear Systems Using Power Series (Power Series를 이용한 불확실성을 포함된 비선형 시스템의 지능형 디지털 재설계)

  • Sung, Hwa-Chang;Joo, Young-Hoon;Park, Jin-Bae;Kim, Do-Wan
    • Proceedings of the KIEE Conference
    • /
    • 2005.10b
    • /
    • pp.496-498
    • /
    • 2005
  • This paper presents intelligent digital redesign method of global approach for hybrid state space fuzzy-model-based controllers. For effectiveness and stabilization of continuous-time uncertain nonlinear systems under discrete-time controller, Takagi-Sugeno(TS) fuzzy model is used to represent the complex system. And global approach design problems viewed as a convex optimization problem that we minimize the error of the norm bounds between nonlinearly interpolated linear operators to be matched. Also by using the power series, we analyzed nonlinear system's uncertain parts more precisely. When a sampling period is sufficiently small, the conversion of a continuous-time structured uncertain nonlinear system to an equivalent discrete-time system have proper reason. Sufficiently conditions for the global state-matching of the digitally controlled system are formulated in terms of linear matrix inequalities (LMIs).

  • PDF