• Title/Summary/Keyword: T-element

Search Result 2,311, Processing Time 0.031 seconds

Investigation of Loss Analysis Method using Integral Equation Method for Power Transformers (적분법을 이용한 전력용 변압기의 손실 해석법 연구)

  • Bae, Byunghyun;Lee, Seungwook;Choi, Jongung;Park, Seokweon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.489-494
    • /
    • 2013
  • In analysis of power transformer loss using calculation of magnetic field, Finite element method is commonly used. When using this method, calculation of magnetic field needs the very large number of elements and the performance of common work station is not sufficient to calculate the magnetic fields. In addition, the definition of boundary conditions may arise. However, When using Integral equation method, only ferromagnetic materials need to be modeled, since the domain is infinite. All the space in which the primary and secondary sources exist is regarded as free(${\mu}={\mu}_0$).

J-T Characterization of Stress Fields Along 3D Semi-Elliptical Interfacial Crack Front (J-T에 의한 3차원 반타원 계면균열선단 응력장의 기술)

  • Choi, Ho-Seung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.7
    • /
    • pp.1250-1261
    • /
    • 2002
  • Many research works have validated the J-T approach to elastic-plastic crack-tip stress fields in a variety of plane strain specimens. To generalize the validity of J-T method, further investigations are however needed for more practical 3D structures than the idealized plane strain specimens. In this work, we perform 3D finite element (FE) modeling of welded plate and straight pipe, and accompanying elastic, elastic-plastic FE analyses. Manual 3D modeling is almost prohibitive, since the models contain semi-elliptical interfacial cracks which require singular elements. To overcome this kind of barrier, we develop a program generating the meshes for semi-elliptical interfacial cracks. We then compare the detailed 3D FE stress fields to those predicted with J-T two parameters. Thereby we extend the validity of J-T application to 3D structures and infer some useful informations for the design or assessment of pipe welds.

3D Semi-elliptical Interfacial Crack Front Stress Fields in Welded Joints (용접부 3차원 반타원 계면균열선단에서의 응력장)

  • 최호승;이형일;송원근
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.15 no.4
    • /
    • pp.649-659
    • /
    • 2002
  • For a variety of elastic-plastic stress fields of plane strain specimens, many research works verified the validity of J-T approach. To generalize the validity of J-T method, however, further investigations are needed for more practical 3D structures than the idealized geometries as plane strain specimens. In this work, selecting two main types of structures such as plate and straight pipe, we perform 3D finite element(FE) modeling, and accompanying elastic, elastic-plastic FE analyses. We then study the validity of J-T application to 3D structures, and present some useful informations for the design or assessment of pipe welds by comparing the stress fields from the detailed 3D FE analyses to those predicted with J-T two parameters.

Analysis of CFT Beam-to-Column Connections with T-Stiffeners (T형 스티프너를 이용한 콘크리트 충전강관 기둥-보 접합부의 해석에 관한 연구)

  • Shin, Kyung Jae;Kim, Hyun Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.17 no.3 s.76
    • /
    • pp.375-384
    • /
    • 2005
  • The goal of this paper is to understand the stress-transfer mechanism of concrete-filled tubular column to H-beam connections with external T-stiffener through the finite element method and to offer basic data for the design of T-stiffener. To identify the problems of previous test results, the same shapes of the full-scale test specimens were modeled for the finite element analysis. Results of the analysis were compared with the test results. Several stress and strain indices were used to understand the stress-transfer mechanism of connection with various T-stiffeners parameters. The models of analysis with different T-stiffener are grouped into TS, TSD, and TSH series. An alternative plan that decreases the stress concentration of beam flange to horizontal stiffener connection is proposed through the elasto-plastic finite element method. The basic design idea and minimum sizes of T-stiffener were proposed based on the various indices in relation to the connection details.

Column design of cold-formed stainless steel slender circular hollow sections

  • Young, Ben;Ellobody, Ehab
    • Steel and Composite Structures
    • /
    • v.6 no.4
    • /
    • pp.285-302
    • /
    • 2006
  • This paper describes the design and behaviour of cold-formed stainless steel slender circular hollow section columns. The columns were compressed between fixed ends at different column lengths. The investigation focused on large diameter-to-plate thickness (D/t) ratio ranged from 100 to 200. An accurate finite element model has been developed. The initial local and overall geometric imperfections have been included in the finite element model. The material nonlinearity of the cold-formed stainless steel sections was incorporated in the model. The column strengths, load-shortening curves as well as failure modes were predicted using the finite element model. The nonlinear finite element model was verified against test results. An extensive parametric study was carried out to study the effects of cross-section geometries on the strength and behaviour of stainless steel slender circular hollow section columns with large D/t ratio. The column strengths predicted from the parametric study were compared with the design strengths calculated using the American Specification, Australian/New Zealand Standard and European Code for cold-formed stainless steel structures. It is shown that the design strengths obtained using the Australian/New Zealand and European specifications are generally unconservative for the cold-formed stainless steel slender circular hollow section columns, while the American Specification is generally quite conservative. Therefore, design equation was proposed in this study.

Static Strength of Ring-stiffened Tubular T-joints (내부 환보강 T형 관이음부의 정적강도)

  • Cho, Hyun-Man;Ryu, Yeon-Sun
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.05a
    • /
    • pp.145-150
    • /
    • 2002
  • Tubular joints having a large diameter in the offshore structure are reinforced using internal ring stiffener in order to increase the load carrying capacity. In this study, the static strengths of internally ring-stiffened tubular T-joints subjected to compressive brace loading are assessed. Nonlinear finite element analyses are used to compute the behavior of unstiffened and ring-stiffened T-joints. From the numerical results, internal ring stiffener is found to efficient in improving the ultimate capacity, and reinforcement effect are calculated. The influence of geometric parameters for members and ring is evaluated. Based on the FE results, regression analysis is performed considering practical sizes of ring stiffener, finally strength estimation formulae for ring-stiffened T-joints are proposed.

  • PDF

Nonlinear Finite Element Analysis of Steel Composite Girders (합성형 거더의 3차원 비선형 거동해석)

  • 주영태;강병수;성원진;박대열;이용학
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2003.11a
    • /
    • pp.173-176
    • /
    • 2003
  • Progressive failure analysis of steel composite double T-beam is performed to investigate the mechanical effects of steel composite fabricated in the webs of double-T beam to replace concrete placing forms. The analysis is based on nonlinear finite element scheme considering material nonlinearities of concrete, reinforcing bar and PS steel. Four-parameter strength envelope defines the hardening and softening phenomena of concrete with consideration of the various levels of confining pressures. Rankine maximum strength criterion defines the elasto-plasticity of PS steel and reinforcing bar, and Von Mises $J_2$ failure criterion for steel plate which wraps the concrete webs of double T-beam. A 6m long two-span steel composite double T-beam is analyzed and compared with the experimental results.

  • PDF

Plastic η Eactors for J-Integral Testing of Double-Edge Cracked Tension(DE(T)) Plates (양측균열인장(DE(T)) 평판의 J-적분 시험을 위한 소성 η계수)

  • Son, Beom-Goo;Shim, Do-Jun;Kim, Yun-Jae;Kim, Young-Jin
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.28 no.3
    • /
    • pp.259-266
    • /
    • 2004
  • Detailed two-dimensional and three-dimensional finite element (FE) analyses of double-edge cracked tension (DE(T)) specimens are carried out to investigate the effect of the relative crack length and the thickness on experimental J testing schemes. Finite element analyses involve systematic variations of relevant parameters, such as the relative crack depth and plate width-to-thickness ratio. Furthermore, the strain hardening index of material is systematically varied, including perfectly plastic (non-hardening) cases. Based on FE results, a robust experimental J estimation scheme is proposed.

Static Strength of Internally Ring-Stiffened Tubular T-Joints (내부 환보강 T형 관이음부의 정적강도)

  • CHO HYUN-MAN;RYU YEON-SUN
    • Journal of Ocean Engineering and Technology
    • /
    • v.18 no.6 s.61
    • /
    • pp.70-78
    • /
    • 2004
  • In order to increase the load carrying capacity of tubular structures, the joints of tubular members are usually reinforced with various reinforcement system. A stiffening method with internal ring stiffeners is effectively used for the steel tubular joint with a large diameter. In this study, the behavior of internally ring-stiffened tubular T-joints subjected to axial loading is assessed. For the parametric study, nonlinear finite element analyses are used to compute the static strength on non-stiffened and ring-stiffened T-joints. Based on the numerical results, an internal ring stiffener is found to be efficient in improving the static strength. The influence of geometric parameters has been determined, and the reinforcement effect are evaluated. Based on the FE results, regression analises are performed considering the practical size of ring stiffener. Finally strength estimation formulas for ring-stiffened tubular T-joints are proposed.

Crack tip plastic zone under Mode I, Mode II and mixed mode (I+II) conditions

  • Ayatollahi, M.R.;Sedighiani, Karo
    • Structural Engineering and Mechanics
    • /
    • v.36 no.5
    • /
    • pp.575-598
    • /
    • 2010
  • The shape and size of the plastic zone around the crack tip are analyzed under pure mode I, pure mode II and mixed mode (I+II) loading for small scale yielding and for both plane stress and plane strain conditions. A new analytical formulation is presented to determine the radius of the plastic zone in a non-dimensional form. In particular, the effect of T-stress on the plastic zone around the crack tip is studied. The results of this investigation indicate that the stress field with a T-stress always yields a larger plastic zone than the field without a T-stress. It is found that under predominantly mode I loading, the effect of a negative T-stress on the size of the plastic zone is more dramatic than a positive T-stress. However, when mode II portion of loading is dominating the effect of both positive and negative T-stresses on the size of the plastic zone is almost equal. For validating the analytical results, several finite element analyses were performed. It is shown that the results obtained by the proposed analytical formulation are in very good agreements with those obtained from the finite element analyses.