In GMAW, the spatter is generated because of the variation of the arc state. If the arc state is quantitatively assessed, the control method to make the spatter be reduced is able to develop. This study was attempted to develop the optimal model that could estimate the arc state quantitatively. To do this, the generated spatters was captured under the limited welding conditions, and the waveforms of the arc voltage and of the welding current were collected. From the collected waveforms, the waveform factors and their standard deviations were produced, and the linear and non-linear regression models constituted using the factors and their standard deviations are proposed to estimate the arc state. the performance test to the proposed models was practiced. Obtained results are as follow. From the results of correlation analysis between the factors and the amount of the generated spatters, the standard deviations of the waveform factors have more the multiple regression coefficients than the waveform factors. Because the correlation coefficient between T and {TEX}$T_{a}${/TEX}, and s[T] and s[{TEX}$T_{a}${/TEX}] was nearly one, it was found that these factors have the same effect to the spatter generation. In the regression models to estimate the arc state, it was fond that the linear and the non linear models were also consisted of similar factors. In addition, the linear regression model was assessed the optimal model for estimating the arc state because the variance of data was narrow and multiple regression coefficient was highest among the models. But in the welding conditions which the amount of the generated spatters were small, it was found that the non linear regression model had better the estimation performance for the spatter generation than the linear.
본 논문은 다수의 사물인터넷 단말에서 보편적으로 수집할 수 있는 시스템 및 네트워크 메트릭을 학습하여 각 사물의 경험데이터를 기반으로 서비스거부 및 분산반사 서비스거부 공격을 탐지하는 침입 탐지 모델을 제안한다. 먼저, 공격 시나리오 유형별로 각 사물에서 37종의 시스템 및 네트워크 메트릭을 수집하고, 이를 6개 유형의 머신러닝 모델을 기반으로 학습하여 사물인터넷 공격 탐지 및 분류에 가장 효과적인 모델 및 메트릭을 분석한다. 본 논문의 실험을 통해, 랜덤 포레스트 모델이 96% 이상의 정확도로 가장 높은 공격 탐지 및 분류 성능을 보이는 것을 확인하였고, 그 다음으로는 K-최근접 이웃 모델과 결정트리 모델의 성능이 우수한 것을 확인하였다. 37종의 메트릭 중에는 모든 공격 시나리오에서 공격의 특징을 가장 잘 반영하는 CPU, 메모리, 네트워크 메트릭 5종을 발견하였으며 큰 사이즈의 패킷보다는 빠른 전송속도를 갖는 패킷이 사물인터넷 네트워크에서 서비스거부 및 분산반사 서비스거부 공격 특징을 더욱 명확히 나타내는 것을 실험을 통해 확인하였다.
International Journal of Concrete Structures and Materials
/
제4권1호
/
pp.37-43
/
2010
Theoretical models based on modern interpretations of the morphology and interactions of cement hydration products are developed for prediction of the mechanical properties of hydrated cement paste (hcp). The models are based on the emerging nanostructural vision of calcium silicate hydrate (C-S-H) morphology, and account for the intermolecular interactions between nano-scale calcium C-S-H particles. The models also incorporate the effects of capillary porosity and microcracking within hydrated cement paste. The intrinsic modulus of elasticity and tensile strength of hydrated cement paste are determined based on intermolecular interactions between C-S-H nano-particles. Modeling of fracture toughness indicates that frictional pull-out of the micro-scale calcium hydroxide (CH) platelets makes major contributions to the fracture energy of hcp. A tensile strength model was developed for hcp based on the linear elastic fracture mechanics theories. The predicted theoretical models are in reasonable agreements with empirical models developed based on the experimental performance of hcp.
Journal of Advanced Marine Engineering and Technology
/
제34권1호
/
pp.102-108
/
2010
본 연구에서는 설계사양과 경제성을 고려한 퍼지형 자동조타기를 설계하기 위한 이전 단계로 Bech와 Wagner Smith의 Nomoto 2차 비선형 확장모델을 퍼지모델로 구현하는 것을 다룬다. 우선 퍼지형 자동조타기를 얻기 위해 선박의 동적 특성을 효과적으로 표현 가능한 T-S 퍼지모델을 얻는다. T-S 퍼지모델은 선박의 회두각속도를 설계변수로 간주하고 이것의 변화에 따라 다수개의 지역 선형모델(서브시스템)을 구한 후, "IF-THEN" 퍼지규칙으로 결합한 것이다. 이때 선형모델의 파라미터와 퍼지모델의 소속함수는 선박의 동적인 특성과 일치하도록 입 출력 데이터와 실수코딩 유전알고리즘이 결합된 모델 조정기법을 이용하여 최적으로 추정한다.
International Journal of Control, Automation, and Systems
/
제5권3호
/
pp.349-354
/
2007
This paper considers the problem of designing static output feedback controllers for nonlinear systems represented by Takagi-Sugeno (T-S) fuzzy models. Based on linear matrix inequality technique, a new method is developed for designing fuzzy stabilizing controllers via static output feedback. Furthermore, the result is also extended to $H_{\infty}$ control. Examples are given to illustrate the effectiveness of the proposed methods.
The dynamic behavior of power systems is affected by the interactions between linear and nonlinear components. To analyze those complicated power systems, the linear approaches have been widely used so far. Especially, a synchronous generator has been designed by using linear models and traditional techniques. However, due to its wide operating range, complex dynamics, transient performances, and its nonlinearities, it cannot be accurately modeled as linear methods based on small-signal analysis. This paper describes an application of the Takaki-Sugeno (T-S) fuzzy method to model the synchronous generator in a single-machine infinite bus (SMIB) system. The T-S fuzzy model can provide a highly nonlinear functional relation with a comparatively small number of fuzzy rules. The simulation results show that the proposed T-S fuzzy modeling captures all dynamic characteristics for the synchronous generator, which are exactly same as those by the conventional modeling method.
The Cheju-Haenam HVDC System is currently being operated in KEPCO's system. But it is quite difficult to control properly due to the newly-introduced system in KEPCO. Therefore, the operators and/or engineers who have little field experiences want to know the system responses for their control actions. To satisfy the needs, the detailed control models which are represented near to real systems are being developed in KEPS project performed by KEPRI. This paper presents the plan for developing the detailed control models and the digital controller based on RTDS of the Cheju-Haenam HVDC system in KEPS project. The EMTDC models of the Cheju-Haenam HVDC system which are the pre-stage models for developing RTDS-based models and digital controllers are also introduced.
Effective nonpoint source (NPS) pollution management requires frequent water quality monitoring, which is, however, often costly to be implemented in practice. Statistical techniques and machine learning methods allow us to identify and focus on fundamental environmental variables that have close relationships with NPS pollutants of interest. This study developed surrogate models to predict the concentrations of suspended sediment (SS) and total phosphorus (T-P) from turbidity and runoff discharge rates using multiple linear regression (MLR) and random forest (RF) methods. The RF models provided acceptable performance in predicting SS and T-P, especially when runoff discharge rates were high. The RF models outperformed the MLR models in all the cases. Such finding highlights the potential of RF techniques and models as a tool to identify fundamental environmental variables that are measured in relatively inexpensive ways or freely available but still able to provide information required to quantify the concentrations of NP S pollutants. The analysis of relative importance rates showed that the temporal variations of SS and T-P concentrations could be more effectively explained by that of turbidity than runoff discharge rate. This study demonstrated that the advanced statistical techniques such as machine learning could help to improve the efficiency of NPS pollutants monitoring.
Communications for Statistical Applications and Methods
/
제5권3호
/
pp.887-894
/
1998
Let T=( $T_1$,…, $T_{k}$;k$\geq$2) be a minimal sufficient and complete statistic for a k-parameter exponential model. Consider a partition of T into ( $T_1$, $T_2$), where $T_1$=( $T_1$,…, $T_{r}$ and $T_2$=( $T_{r+1}$,…, $T_{k}$1$\leq$r$\leq$k-1/). This article represents a way to obtain higher moments such as skewness and kurtosis for the distribution T and the conditional distribution of $T_1$, given $T_2$= $t_2$. These results are illustrated by some examples.s.les.s.
알츠하이머병은 치매를 일으키는 원인 중 가장 높은 빈도를 차지하는 신경퇴행성 질환으로서, 아직은 증상을 개선시키는 정도의 약물적 치료가 주를 이룬다. 이러한 경구약제의 치료적 한계성 및 신약개발의 어려움에 직면하여 임상에서는 비약물적 치료에 대한 관심이 높아지고 있다. 경두개 직류전기자극(transcranial direct current stimulation, tDCS)는 낮은 강도의 직류전류를 이용한 비침습적 뇌조절술의 한 종류로서, 그 안전성에 대해서는 이미 널리 입증받은 바 있다. 본 종설에서는 알츠하이머병 쥐 모델에게 tDCS를 적용함으로써 얻을 수 있는 행동학적, 신경생리학적, 뇌조직학적 회복에 대한 객관적 근거들을 살펴봄으로써, 인간 대상 tDCS연구의 배경근거를 제시하고자 한다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.