• Title/Summary/Keyword: T-S Fuzzy Identification

Search Result 8, Processing Time 0.035 seconds

T-S Fuzzy Control of PMSM Based on T-S Fuzzy Identification (T-S Fuzzy Identification을 이용한 PMSM의 T-S Fuzzy 제어)

  • Baek, Seung-Ho;Kim, Tae-Kue;Kwak, Gun-Pyong;Park, Seung-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1862-1863
    • /
    • 2011
  • 본 논문은 T-S Fuzzy Identification을 이용하여 PMSM를 모델링하고 T-S Fuzzy 제어로 PMSM을 제어하는 것 제안합니다. 시스템을 모델링을 위해서는 기존에는 파라미터를 알아야 가능했지만 시스템의 입출력 데이터를 가지고 T-S Fuzzy Identification을 하게 되면 쉽게 시스템을 모델링 할 수 있다. 논문에서는 T-S Fuzzy Identification을 통하여 모델링을 하고 T-S Fuzzy제어을 통해서 PMSM을 제어 할 수 있는 것을 보여주고 한다.

  • PDF

The study on Induction motor of 'T-S Fuzzy Identification' (T-S Fuzzy Identification을 이용한 유도전동기 구현에 관한 연구)

  • Lee, Seung-Taek;Lee, Dong-Kwang;Ann, Ho-Kyun;Park, Seung-Kyu;Ahn, Jong-Keon;Yun, Tae-Sung;Kwak, Gun-Pyong
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.16 no.5
    • /
    • pp.973-981
    • /
    • 2012
  • In this paper, it suggest that nonlinear multivariable system control of induction motor using 'T-S Fuzzy Identification' 'T-S Fuzzy model of linearization' is not easy because of that arithmetic is difficult in computation of the function. Therefore 'T-S Fuzzy Identification' is suggested that the rules and functions through the estimation of high accuracy provides linearized model.

A T-S Fuzzy Identification of Interior Permanent Magnet Synchronous (매입형 영구자석 동기전동기의 T-S 퍼지 모델링)

  • Wang, Fa-Guang;Kim, Min-Chan;Kim, Hyun-Woo;Park, Seung-Kyu;Yoon, Tae-Sung;Kwak, Gun-Pyoung
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.28 no.4
    • /
    • pp.391-397
    • /
    • 2011
  • Control of interior permanent magnet (IPMSM) is difficult because its nonlinearity and parameter uncertainty. In this paper, a fuzzy c-regression models clustering algorithm which is based on T-S fuzzy is used to model IPMSM with a series linear model and weight them by memberships. Lagrangian of constrained function is built for calculating clustering centers where training output data are considered. Based on these clustering centers, least square method is applied for T-S fuzzy linear model parameters. As a result, IPMSM can be modeled as T-S fuzzy model for T-S fuzzy control of them.

Identification of Induction Motor Using TS Fuzzy (T-S Fuzzy를 이용한 유도전동기의 Identification)

  • Lee, Dong-Kwang;Park, Seung-Ho;Kwak, Gun-Pyong;Park, Seung-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1856-1857
    • /
    • 2011
  • Induction motor is nonlinear multivariable system. It is not easy to control precisely. Usually Induction motor need linearized model in order to make it easy to control. In this paper, linearized model of nonlinear model in induction motor can change by using TS Fuzzy Identification.

  • PDF

A Study on the Design of Fuzzy Controller for a Turbojet Engine Model and its Performance Enhancement through Satisfactory Multiple Objectives (터보제트엔진의 퍼지제어기 설계 및 다목적함수 만족기법을 통한 제어성능 향상에 관한 연구)

  • Han,Dong-Ju
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.31 no.6
    • /
    • pp.61-71
    • /
    • 2003
  • In the study of control technique for a turbojet engine model, the Takagi-Sugeno fuzzy logic controller has been designed based on the model identification by the well designed PI controlled system through T-S neuro-fuzzy inference system. To enhance this designed controller, those procedures are proposed that certainty factors are adopted to each rule of objective groups which are classified by the fuzzy C-Means algorithm and the satisfaction degrees are matched to meet the objectives. This proposed technique shows its feasibility by upgrading performances of the previously well-designed T-S fuzzy controller.

Study on the T-S Fuzzy Modeling in Cart-Type Inverted Pendulum System (바퀴형 역진자 시스템의 T-S Fuzzy Modeling에 관한 연구)

  • Lee, Seung-Taek;Lee, Dong-Kwang;Kwak, Gun-Pyong;Park, Seung-Kyu
    • Proceedings of the KIEE Conference
    • /
    • 2011.07a
    • /
    • pp.1858-1859
    • /
    • 2011
  • 제어를 할 때 비선형 시스템을 선형화 하는 것이 중요하다. 선형화를 하기위해는 퍼지 모델을 사용하는데 그 중 바퀴형 역진자 시스템은 비선형 시스템의 파라미터 값을 모두 알아도 T-S퍼지를 기반으로 하여 선형제어를 사용하는데 어려움이 있다. 그래서 Identification을 함으로써 바퀴형 역진자 시스템을 좀 더 편리하게 T-S 퍼지 모델로 만들 수 있다.

  • PDF

A Study on Short-Term Load Forecasting System Using Data Mining (데이터 마이닝을 이용한 단기부하예측 시스템 연구)

  • Kim, Do-Wan;Park, Jin-Bae;Kim, Juhg-Chan;Joo, Young-Hoon
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.588-591
    • /
    • 2003
  • This paper presents a new short-term load forecasting system using data mining. Since the electric load has very different pattern according to the day, it definitely gives rise to the forecasting error if only one forecasting model is used. Thus, to resolve this problem, the fuzzy model-based classifier and predictor are proposed for the forecasting of the hourly electric load. The proposed classifier is the multi-input and multi-output fuzzy system of which the consequent part is composed of the Bayesian classifier. The proposed classifier attempts to categorize the input electric load into Monday, Tuesday$\sim$Friday, Saturday, and Sunday electric load, Then, we construct the Takagi-Sugeno (T-S) fuzzy model-based predictor for each class. The parameter identification problem is converted into the generalized eigenvalue problem (GEVP) by formulating the linear matrix inequalities (LMIs). Finally, to show the feasibility of the proposed method, this paper provides the short-term load forecasting example.

  • PDF

Application and Validation of Delay Dependent Parallel Distributed Compensation Controller for Rotary Wing System (회전익 시스템의 시간지연 종속 병렬분산보상제어기 적용과 검증)

  • You, Young-Jin;Choi, Yun-Sung;Jeong, Jin-Seok;Song, Woo-Jin;Kang, Beom-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1043-1053
    • /
    • 2016
  • In this paper, the application of Parallel Distributed Compensation (PDC) controller for fixed pitch rotary wing system was studied. For nonlinear modeling, T-S fuzzy model was utilized to advance system control including the tilt type UAV. PDC controller was designed through the Linear Matrix Inequality (LMI). Experiments for determining the applicability and feasibility of PDC were performed using the 1 axis attitude control equipment and simulation. To verify the performance and characteristics of the controller, Mathworks Co. Simulink was used. After then, the PDC controller performance was verified and the results with developed controller using a 1 axis attitude control equipment were compared. Verification of the feasibility of PDC controller for the fixed pitch rotary wing system and identification of the overall performance and improvement analysis was conducted based on the experimental results.