• Title/Summary/Keyword: T-OLED

Search Result 81, Processing Time 0.026 seconds

Novel Organic Electron Injectors for the Enhancement of Lifetime, Efficiency and Reduction in Operating Voltage in OLEDs

  • Kathirgamanathan, Poopathy;Arkley, Vincent;Surendrakumar, S.;Paramaswara, G.;Ganeshamurugan, S.;Antipan-Lara, J.;Ravichandran, S.;Kumaraverl, M.;Chan, Y.F.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08b
    • /
    • pp.1206-1209
    • /
    • 2007
  • Both PM-OLEDs and AM-OLEDs are now in production. However, manufacturers are still concerned about life-time, voltage drift, operating voltage and efficiency in order to develop larger displays. Most material suppliers seem to be focussing on emitters and the benefits of introducing suitable charge transporters have been largely unexplored. OLED-T has developed a novel organic electron injector (Trade Name: EI-101) which evaporates at a very low temperature of $300^{\circ}C$ as opposed to the conventional LiF which requires $580^{\circ}C$. EI-101 has been found to increase the lifetime by up to 12%, reduce the voltage drift by up to 61% and increase the efficiency by up to 15%. The material can be handled in air and in situ Q-mass spectroscopy on extended thermal evaporation has confirmed its high stability for use in mass production.

  • PDF

Charge transport materials for the manufacture of OLEDs

  • Kathirgamanathan, Poopathy;Surendrakumar, S.;Ganeshamurugan, S.;Kumaraverl, M.;Paramaswara, G.;Partheepan, A.;Ravichandran, S.
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2006.08a
    • /
    • pp.357-362
    • /
    • 2006
  • OLEDs are becoming established as a commercially viable flat panel display technology of choice of the $21^{st}$ century because of its lightweight, fast response time, lower thickness than LCD's and potentially low cost (1-2). For the OLEDs to function effectively, highly thermally stable materials, which offer high efficiency and long operational lifetimes are required. To achieve long lifetime, highly stable charge (both holes and electrons) transporters are essential. OLED-T provides these materials as well as fluorescent and phosphorescent dopants. This paper reports a unique patented hole injector (E9363) and an electron transporter (E246) that increases the lifetime and efficiency and reduces operating voltage. Further, an electron injector, EEI-101, which evaporates at a very low temperature of $300^{\circ}C$ as opposed to the conventional LiF, which requires $580^{\circ}C$, is also presented.

  • PDF

The Luminescent Characteristics of C545T Doped OLED Devices (C545T가 첨가된 OLED 소자의 발광특성)

  • Ju, Sung-Hoo;Yang, Jae-Woong
    • Journal of the Korean institute of surface engineering
    • /
    • v.40 no.2
    • /
    • pp.77-81
    • /
    • 2007
  • To investigate the characteristics of green light-emitting OLED device, C545T material with $Alq_3$ was doped in the OLED device of $ITO(1500)/2-TNATA(400{\AA})/NPB(80{\AA})/Alq_3:C545T(160{\AA})/Alq_3(240{\AA})/LiF(3{\AA})/Al(2400{\AA})$ structure, which was used as a activator at the respective concentration of 0.5 vol.%, 1 vol.%, 2 vol.% and 3 vol.%. It was observed from the experiments that the device efficiency firstly increased with the increase of C545T concentration and the maximum efficiency of 10.9 cd/A and 4.28 lm/W was obtained at C545T concentration of 1 vol.%, and then the device efficiency decreased as the C545T activator concentration increased above 2 vol.% contents, while the longest lifetime of over 750 hours was obtained at C545T concentration of 1 vol.%.

5-TFT OLED Pixel Circuit Compensating Threshold Voltage Variation of p-channel Poly-Si TFTs (p-채널 다결정 실리콘 박막 트랜지스터의 문턱전압 변동을 보상할 수 있는 5-TFT OLED 화소회로)

  • Chung, Hoon-Ju
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.9 no.3
    • /
    • pp.279-284
    • /
    • 2014
  • This paper proposes a novel OLED pixel circuit to compensate the threshold voltage variation of p-channel low temperature polycrystalline silicon thin-film transistors (LTPS TFTs). The proposed 5-TFT OLED pixel circuit consists of 4 switching TFTs, 1 OLED driving TFT and 1 capacitor. One frame of the proposed pixel circuit is divided into initialization period, threshold voltage sensing and data programming period, data holding period and emission period. SmartSpice simulation results show that the maximum error rate of OLED current is -4.06% when the threshold voltage of driving TFT varies by ${\pm}0.25V$ and that of OLED current is 9.74% when the threshold voltage of driving TFT varies by ${\pm}0.50V$. Thus, the proposed 5T1C pixel circuit can realize uniform OLED current with high immunity to the threshold voltage variation of p-channel poly-Si TFT.

A Voltage Programming AMOLED Pixel Circuit Compensating Threshold Voltage Variation of n-channel Poly-Si TFTs (n-채널 다결정 실리콘 박막 트랜지스터의 문턱전압 변동 보상을 위한 전압 기입 AMOLED 화소회로)

  • Chung, Hoon-Ju
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.2
    • /
    • pp.207-212
    • /
    • 2013
  • A novel pixel circuit that uses only n-type low-temperature polycrystalline silicon (poly-Si) thin-film transistors (LTPS-TFTs) to compensate the threshold voltage variation of a OLED driving TFT is proposed. The proposed 6T1C pixel circuit consists of 5 switching TFTs, 1 OLED driving TFT and 1 capacitor. When the threshold voltage of driving TFT varies by ${\pm}0.33$ V, Smartspice simulation results show that the maximum error rate of OLED current is 7.05 % and the error rate of anode voltage of OLED is 0.07 % at Vdata = 5.75 V. Thus, the proposed 6T1C pixel circuit can realize uniform output current with high immunity to the threshold voltage variation of poly-Si TFT.

Electroluminescent Characteristics of Fluorescent OLED with Alternating Current Forward Bias (교류 순방향 바이어스에 따른 형광 OLED의 전계 발광 특성)

  • Seo, Jung-Hyun;Ju, Sung-Hoo
    • Journal of the Korean institute of surface engineering
    • /
    • v.50 no.5
    • /
    • pp.398-404
    • /
    • 2017
  • In order to study the AC driving mechanism for OLED lighting, the fluorescent OLEDs were fabricated and the electroluminescent characteristics of the OLEDs by AC forward bias were analyzed. In the case of the driving method of OLED by AC forward bias under the same voltage and the same current density, degradation of luminescent characteristics for elapsed time progressed faster than in the case of the driving method by DC bias. These phenomena were caused by the peak voltage of AC forward bias which is ${\sqrt{2}}$ times higher than the DC voltage. In addition, the degradation of the OLED was accelerated because the AC forward bias had come close to the upper limit of the allowable voltage range even though the peak voltage didn't exceed the allowable range of the OLED. However, the fabricated fluorescent OLED showed little degradation of OLED characteristics due to AC forward bias from 0 V to 6.04 V. Therefore, OLED lighting by AC driving will become commercialized if sufficient luminance is realized at a voltage at which the characteristics of the OLED are not degradation by the AC driving method.

Analysis of Luminance Degradation characteristics of OLED using the Hotplate (핫플레이트를 이용한 OLED의 휘도열화특성 분석)

  • Kim, Yun-Cheol;Lee, Duek-Jung;Jang, Joong-Soon
    • Journal of Applied Reliability
    • /
    • v.16 no.4
    • /
    • pp.356-363
    • /
    • 2016
  • Purpose: The purpose of this study is to propose efficiency of equipment testing the luminance degradation of OLED. Methods: The degradation model of Exponential model and Stretched exponential model is analyzed by goodness of fit test using calculated R-square. The degradation model having the higher R-square is finally selected. Scale parameter and Shape parameter using the selected degradation model is estimated. The activation energy and current density n using peck model among the accelerated model is estimated. the estimated parameters are analyzed by t-test. Results: The results of t-test show that the estimated parameters on chamber and hotplate are equal statistically. we can know the similarity of the luminance degradation rate and degradation pattern on chamber and hotplate. Conclusion: The result of the degradation test on chamber and hotplate is similar. when the accelerated degradation test on the panel of the OLED TV is performed, hotplate is requiring less samples, time and cost than chamber. so the accelerated degradation test on the panel of the OLED TV using the hoplate is efficient of time and cost.

Contrast Improvement of OLED Using Multi-layer of Metal and Metal Oxide

  • Hwang, Soo-Woong;Lee, Soo-Hwan;Choi, Jae-Youn;Yoon, Hyun-Soo;Kim, You-Hyun;Chae, Soo-Joh;Kim, Woo-Young
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.530-532
    • /
    • 2008
  • Inorganic metal multi-layer(IMML) consisting of Al/Al:SiO/Al was developed as a cathode for OLED to reduce the reflectance generated from ambient light. Device structure of green OLED was ITO/2-TNATA/$\alpha$-NPD/$Alq_3$:C545T/Balq/$Alq_3$/LiF/IMML and IMML was composed of three different layers: thin aluminum layer, aluminum layer doped with silicon monoxide and thick aluminum layer. Average reflectance of green OLED was 9.63% while that of conventional OLED with or without polarizer showed the average reflectance of 8.54% and 66% respectively at visible range from 380 nm to 780 nm.

  • PDF

Tandem reflective LCD and OLED

  • Lee, Jiun-Haw;Xianyu, Haiqing;Ge, Zhibing;Liu, Kou-Chen;Wu, Shin-Tson
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.977-979
    • /
    • 2007
  • We demonstrate a hybrid device with high ambien t-contrast-ratio (>133.8:1) under any ambient co nditions by vertically integrating a reflective LCD and a transparent OLED. The twisted nematic LC cell is placed beneath the OLED to improve dev ice transmittance by 53.8% due to the asymmet ric emission from both-sides of the transparent OLED.

  • PDF

Study on Optical Characteristics of Organic Light-emitting Diodes Using Two Fluorescence Dopants in Single Emissive Layer (2개의 형광 도판트를 적용한 단일발광층 유기발광소자의 광학적 특성 연구)

  • Kim, Tae-Gu;Oh, Hwan-Sool;Kim, You-Hyun;Kim, Woo-Young
    • Journal of the Korean Vacuum Society
    • /
    • v.19 no.3
    • /
    • pp.184-189
    • /
    • 2010
  • Organic light-emitting diodes (OLEDs) with single emissive layer structures using two fluorescent dopants were fabricated and the device was composed of ITO / NPB ($700{\AA}$) / MADN : C545T - 1.0% : DCJTB - 0.3% ($300{\AA}$) / Bphen ($300{\AA}$) / LiF ($10{\AA}$) /Al ($1,000{\AA}$). C545T and DCJTB were functioned as green fluorescent dye and red fluorescent dye under MADN as host material. Concentrations of C545T and DCJTB was changed in emissive layer of MADN. Optimized OLED device using two fluorescence dopants shows emission efficiency of 8.42 cd/A and luminescence of 3169 cd/$m^2$at 6 V with CIE color coordinate, (0.43, 0.50). Electroluminescence of optimized OLED showed two peak at 500 and 564 nm according to C545T and DCJTB. These results indicate that F$\ddot{o}$ster energy transfer energy transfer was from MADN to C545T and rather than to DCJTB continuously.