
Charge transport materials for the manufacture of OLEDs 

Poopathy Kathirgamanathan, S. Surendrakumar, S. Ganeshamurugan, M. Kumaraverl, 
G. Paramaswara, A. Partheepan and S. Ravichandran  

OLED-T Ltd, Workzone Unit 2, 8 Kinetic Crescent, Innova Science Park,  
Enfield, EN3 7XH, Great Britain 

Phone: +44 (0)208 344 8419, Fax: +44 (0)208 350 1434, Email: Professor@oled-t.com 

Abstract
OLEDs are becoming established as a commercially 
viable flat panel display technology of choice of the 
21st century because of its lightweight, fast response 
time, lower thickness than LCD’s and potentially low 
cost (1-2). For the OLEDs to function effectively, 
highly thermally stable materials, which offer high 
efficiency and long operational lifetimes are 
required. To achieve long lifetime, highly stable 
charge (both holes and electrons) transporters are 
essential. OLED-T provides these materials as well 
as fluorescent and phosphorescent dopants. This 
paper reports a unique patented hole injector 
(E9363) and an electron transporter (E246) that 
increases the lifetime and efficiency and reduces 
operating voltage. Further, an electron injector, 
EEI-101, which evaporates at a very low 
temperature of 300 C as opposed to the conventional 
LiF, which requires 580 C, is also presented.

1. Objectives and Background
Electron transporters and electron injectors are 
integral parts of most OLED’s and they facilitate 
efficient electron injection. The requirement of a 
good electron transporter is that it should prolong life, 
increase the efficiency and lower the operating 
voltage at a useful luminance. It is now widely 
accepted by major manufacturers that an electron 
transporter with higher mobility than Alq3 is required 
(3-6) for early commercialisation of AM-OLEDs. 
We, at OLED-T, have been focussing our attention 
on OLED materials (both fluorescent and 
phosphorescent), hosts, hole injectors, electron 
transporters and electron injectors that offer long 
lifetime and high efficiency (7). We report here a 
unique patented novel electron transporter and an 
electron injector. We have discovered an electron 
transporter (a metal complex, E246®) that increases 
the lifetime and efficiency and reduces the operating 
voltage for R, G and B devices. 

Further, E246® has been validated on both ULVAC 
and Tokki vacuum systems. We also report a 
patented electron injector (EEI–101®), which 
evaporates at 300 C as opposed to the conventional 

LiF, which evaporates at 580 C in vacuo. We have 
also developed a transparent hole injector (E9363) 
which requires a temperature of only 390 C to have 
an evaporation rate of 2 Ås-1 as opposed to 460 C for 
CuPc to achieve the same rate. Furthermore, E9363 
provides longer lifetime than CuPc. 

2. Experimental and Results 
2.1. Physical Properties 
A selected number of physical properties of the hole 
injector E9363 is compared with CuPc and 2-
TNATA in Table 1. The absorption spectra of thin 
films of CuPC, 2-TNATA and E9363 are compared 
in Figure 1 and the evaporation rate vs. temperature 
profile is shown in Figure 2. A selected number of 
physical properties of the electron transporter E246 
is compared with that of Alq3 in Table 2. 

Table 1: Selected physical properties of hole 
injectors.

Material Tg

( C)
Tm

( C)
WF

(eV)
Temperature required 

to achieve 2 Ås-1

E9363 - > 400 - 5.4 390 C
CuPC - > 400 - 5.3 460 C
2-TNATA 118 254 - 5.3 370 C
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Figure 1: Absorption spectra of hole injectors. 
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Figure 2: Evaporation rate vs. temperature profiles 
in solciet. 
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Table 2: Selected physical properties of electron 
transporters.

Material Tm

( C)
HOMO 

(eV)
LUMO 

(eV)
Photoluminescence 

maximum (nm) 
E246 388 - 5.6 - 2.9 537 
Alq3 414 - 5.7 - 2.9 520 

We have carried out extensive thermal stability tests 
on E246 by heating the E246 (5 g) in a BN crucible 
for 2 days in our Solciet (ULVAC) OLED 
production machine. Temperature, pressure and 
evaporation rate vs. time profiles for Day 1 and Day 
2 are shown in Figures 3 and 4 respectively. In-situ 
q-mass spectroscopy has been carried out on E246 
(15 g) in a titanium crucible on a Tokki OLED 
machine at 320 C over a continuous period of 19 
hours. The spectral out-put at t = 0 and t =19 h are 
shown in Figures 5a-b.
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Figure 3: Evaporation rate and pressure vs. 
temperature profiles of E246 in solciet (Day 1). 
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Figure 4: Evaporation rate and pressure vs. 
temperature profiles of E246 in solciet (Day 2). 

Figure 5a: Q-mass of E246 in solciet t = 0. 

Figure 5b: Q-mass of E246 in solciet at t = 19 hours. 

DSC (Figure 6), UV-Visible spectroscopy of the thin 
films made in Day 1 and Day 2 (Figure 7), UV-Vis. 
Spectroscopy of dichloromethane solutions of E246 
before and after evaporation tests at 300 C for 16 
hours (Figure 8), fluorescent spectroscopy of 
dichloromethane solutions of E246 (before and after 
evaporation tests, Figure 9) have been carried out to 
ensure that the chemical composition of E246 has 
not changed during the oled manufacture. 
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Figure 6: DSC of E246 before and after evaporation 
test.
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Figure 7: UV-vis absorption spectra of thin films of 
E246 after Day 1 and Day 2 of evaporation tests. 
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Figure 8: UV-vis absorption spectra of E246 before 
and after evaporation test. 
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Figure 9: Fluorescent spectra of E246 before and 
after evaporation test.

2.2 Device Manufacture and Performance 
2.2.1. HIL (E9363):  
We established the superior quality of our hole 
injector, E9363, by fabricating devices with Alq3 as a 
host doped with our proprietary green dopant (E036) 
and Alq3 as the etl and comparing the devices with 
E9363, CuPc and 2-TNATA as HILs.  Figure 10 
shows the luminance vs. voltage for devices 
ITO/HIL(20 nm)/ -NPB(50 nm)/Alq3 : E036(40 nm : 
0.1  nm)/Alq3(20 nm)/LiF(0.3 nm)/Al. 
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Figure 10: Green device performance (L vs. V); 
E9363 vs. CuPc and 2-TNATA as hole injectors. 

Lifetime measurements on these devices were made 
at 1200 cdm-2 under constant current drive (Figure 
11). The performance of devices of ITO/HIL(20nm)/ 

-NPB (65 nm)/CBP : EphosA (20 nm:0.5 nm)/BCP 
(6 nm)/Alq3(55 nm)/LiF(0.3 nm)/Al where HIL is 
CuPC or E9363 are shown in Figures 12a-b.  
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Figure 11: Green device lifetime; E9363 vs. CuPc 
and 2-TNATA as hole injectors. 
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Figure 12a: Phosphorescent green device 
performance (L vs. V); E9363 vs. CuPc as a hole 
injector.
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Figure 12b: Phosphorescent green device 
performance ( I vs. L); E9363 vs. CuPc as a hole 
injector.

2.2.2 ETL (E246): 
Red devices were made as follows: ITO/E9363(20 
nm)/ -NPB(50 nm)/Alq3(60 nm) : E047 (0.7 nm, red 
dopant)/ETL(30 nm)/LiF(0.3 nm)/Al where the etl is 
either Alq3 or E246. The performance of these 
devices is shown in Figures 13a-b. 
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Figure 13a: Red device performance (L vs. V); 
E246 vs. Alq3 as an electron transporter. 
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Figure 13b: Red device performance ( I vs. V); 
E246 vs. Alq3 as an electron transporter.
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Green devices were made as follows: ITO/CuPc (20 
nm)/Alq3(40 nm): C545T (0.4 nm)/ETL (20 nm)/LiF 
(0.3 nm)/Al where the etl is either Alq3 or E246 
(Figures 14 a-b).  
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Figure 14a: Green device performance (L vs. V); 
E246 vs. Alq3 as an electron transporter. 
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Figure 14b: Green device performance ( I vs. L); 
E246 vs. Alq3 as an electron transporter. 

Blue devices made as follows: ITO/E9363(30 nm)/ 
-NPB(50 nm)/EH007(blue host, 25 nm):perylene 

(0.02 nm, blue dopant)/ETL(20 nm)/LiF(0.3 nm)/Al 
(Figures 15.1 a-b) or ITO/HIL/blue host(EH007): 
blue dopant/ETL/LiF (0.3 nm)/Al (Figures 15.2 a-b) 
where the ETL is either Alq3 or E246. 
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Figure 15.1a: Blue device performance (L vs. V); 
E246 vs. Alq3 as an electron transporter. 
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Figure 15.1b: Blue device performance ( I vs. L); 
E246 vs. Alq3 as an electron transporter. 
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Figure 15.2a: Blue device performance (L vs. V); 
E246 vs. Alq3 as an electron transporter. 

Luminance (cd m-2)
101 102 103 104

C
ur

re
nt

 E
ffi

ci
en

cy
 (c

d 
A

-1
)

5

6

7

8

9

10

E246

Alq3

ITO/HIL/HTL/Host:Blue Dopant/ETL/EI/Cathode 

Figure 15.2b: Blue device performance ( I vs. L); 
E246 vs. Alq3 as an electron transporter.

2.2.3 Electron Injector (EEI-101): 
Figure 16 shows the evaporation rate vs. temperature 
for EEI-101 and LiF. The effectiveness of EEI-101 is 
illustrated by the following devices: ITO/E9363 (20 
nm)/ -NPB(65 nm)/EH007:E1384(25 nm : 0.5 nm)/ 
E246 (20 nm)/EI (0.3 nm)/Al, where EI is either 
EEI-101 or LiF (Figures 17 a-b). 

3. Results and Discussion 
Evaporation tests on E246: As the temperature was 
raised (Figure 3, Day 1), there is a slight pressure 
increase from 2 10-5 Pa to 3.5 10-5 Pa, then it 
stabilises around 2 10-5 Pa on evaporation at 1 Ås-1.
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Figure 16: Evaporation rate vs. temperature profiles 
of electron injectors in solciet. 
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Figure 17a: Blue device performance (L vs. V); 
EEI-101 vs. LiF as an electron injector. 
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Figure 17b: Blue device performance ( I vs. L); 
EEI-101 vs. LiF as an electron injector. 

On increasing the evaporation rate (by increasing the 
temperature) to 3 Ås-1, the pressure remains virtually 
constant. On day 2 (Figure 4), the pressure changes 
were even less marked than Day 1 even though the 
reaction rates were increased from 1 Ås-1 (resident 
time, 5 hour) to 2.5 Ås-1 (1 h) and then 4.5 Ås-1 (1.5 
h). In-situ q-mass spectroscopy of the vapours from 
E246 inside a Tokki OLED evaporator was carried 
out at an hourly interval. Figure 5 shows the q-mass 
spectra at t = 0 and t =19 hours at 320 C which 
shows no evidence of any decomposition. 

The DSC performed on E246 before and after 
heating at 300 C for 16 h shows that the E246 has 
identical m.pt. of 389±1 C (Figure 6). UV-Vis. 

Spectroscopy of thin films produced on Day 1 (8 h at 
320 C, Day 2 (6 h, 320 C) and thin film produced 
from virgin E246 show that the films are identical 
(Figure 7). UV-vis. Spectroscopy and fluorescent 
spectroscopy of dichloromethane solutions of E246 
(before and after heating at 300 C, 16 h) show that 
was no change in the characteristics of E246 on heat 
treatment/evaporation (Figures 8 and 9). All the 
above tests clearly demonstrate that E246 is very 
stable under manufacturing conditions. 

The hole injector (E9363) gives lower operating 
voltage than CuPc and comparable performance to 2-
TNATA as far as L vs. V is concerned. This is 
attributed to the high mobility and high W.F. of 
E9363. Lifetime measurements under constant 
current drive at an initial luminance of 1200 cdm-2

(Figure 11, fluorescent green devices) show that the 
half-life of 2-TNATA based devices is only 50 hours 
and that of CuPC is 2700 h. However, E9363 based 
devices give a half-life of 4590 h, demonstrating its 
superiority. The high mobility of E9363 is further 
illustrated by devices produced from our 
phosphorescent dopant, EPhosA where our HIL 
(E9363) is compared with CuPc (Figures 12a-b). At 
100 cdm-2, the efficiency of CuPc based devices is 
12 cdA-1 whereas that with E9363 is 27 cdA-1 (an 
increase of 125%) and the corresponding operating 
voltages are 9.8 V and 6 V respectively.  

The performance data of fluorescent red, green and 
blue are given in Figures 13, 14 and 15 respectively. 
All the devices with E246 as etl operate at lower 
voltages than those with Alq3 as etl. Table 3 below 
summarises the performance improvement on 
substituting Alq3 with E246 at 100 cdm-2.

Table 3: Improvements in performance by E246 
over Alq3.

Parameter (%) Red 
(Fluo.)

Green
(Fluo.)

Blue
(Fluo.)

Improvement in 
current efficiency 

88 23 40 

Reduction in 
operating voltage 

20 12 8 

The lifetime measurements were carried out at 1000 
cdm-2 (red), 1200 cdm-2 (green) and 3000 cdm-2

(blue) which are shown in Figures 18, 19 and 20. It 
can easily be deduced that E246 doubles the lifetime 
of red devices and increases the lifetime of green by 
1.25 fold or three fold if used as a host as well. The 
lifetime of blue devices is also more than doubled 
compared to Alq3. Figure 21 summarises the lifetime 
results of all the devices with fluorescent green 
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dopants for E9363 vs. CuPc. Vs. 2-TNATA and 
E246 vs. Alq3.
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Figure 18: Red device lifetime; E246 vs. Alq3 as an 
electron transporter.  
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Figure 19: Green device lifetime; E246 vs. Alq3 as a 
host and an electron transporter. 

Electron injector, EEI-101 evaporates at much lower 
temperature of 300 C than LiF (580 C), thus making 
the deposition faster and energy consumption and 
equipment cost lower. In all other respects, EEI-101 
is as effective as LiF as illustrated by the example in 
Figure 17 a-b. 
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Figure 20: Blue device lifetime; E246 vs. Alq3 as an 
electron transporter. 

4. Conclusion 
We have demonstrated that our hole injector, E9363, 
is superior to CuPc as far as the operating voltage 
and lifetimes are concerned. Substituting E246 for 
Alq3 as an etl improves the efficiency, lifetime and 
colour co-ordinates. 

2-TNATA-Alq3/Alq3
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Figure 21: Green device lifetime at half-life (T0.5);
Different hole injectors and electron transporters. 

The electron injector, EEI-101, evaporates at nearly 
280 C lower than LiF. This should improve the 
productivity and saves costs on equipment design. 

E9363, E246 and EEI-101 are available at a purity of 
99.98% in kg quantities. E246 has been tested on 
two pre-production OLED equipment (Ulvac and 
Tokki) and shown to be stable on prolonged heating 
as determined by Q-mass spectroscopy. The low 
temperature evaporable electron injector, EEI-101 
helps alleviate the thermal damage to organic layers 
caused by high temperature required for the 
evaporation of LiF and speed up production. 
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