• 제목/요약/키워드: T-N removal efficiency

검색결과 327건 처리시간 0.032초

인공습지 내 개방수역 조성에 따른 처리효율분석 (Analysis of Treatment Efficiency according to Open-water in Constructed Wetland)

  • 김형철;윤춘경;엄한용;김형중;함종화
    • 한국물환경학회지
    • /
    • 제24권6호
    • /
    • pp.709-717
    • /
    • 2008
  • The field scale experiment which is constructed with four sets (0.88 ha for each set) of wetland (0.8 ha) and pond (0.08 ha) systems was performed to examine the effect of plant coverage on the constructed wetland performance and to recommend the optimum development and management of macrophyte communities. After six growing seasons of wetlands, plant coverage was about 100%. And the concentration of DO showed low value (1.0~5.4 mg/L). This is caused by a blighted plant consumed dissolved oxygen with decay in water column. As the result, water column went to be anaerobic conditions and T-N removal rate are 58~67%. Dead vegetation increased nitrogen removal during winter because it is a source of organic carbon which is an essential parameter in denitrification. However, wetland released phosphorus caused by a blighted plant and accumulation, the removal rate of phosphorus might be decreased. To rise of DO concentration, the three open-waters were constructed in cell 3 and 4. Cell 3 has two open-waters (width 10 m, depth 1.8 m) and cell 4 has one open-water (width 20 m, depth 1.8 m). As the result, DO concentration and treatment efficiency of nutrient and BOD were improved. In case that constructed wetland is operated for a long time, physical circulation structure such as open water help continuous circulation of aerobic and anaerobic conditions. Through the constructed open-water, treatment efficiency of phosphorus and nitrogen in wetland could be improved effectively.

N 도핑된 TiO2 광촉매 박막의 제조 및 특성분석 (Manufacturing and Characterization of N-doped TiO2 Photocatalytic Thin Film)

  • 박상원;남수경;허재은
    • 한국환경과학회지
    • /
    • 제16권6호
    • /
    • pp.683-688
    • /
    • 2007
  • In this study, N doped $TiO_2$ (TiO-N) thin film was prepared by DC magnetron sputtering method to show the photocatalytic activity in a visible range. Various gases (Ar, $O_2\;and\;N_2$) were used and Ti target was impressed by 1.2 kW -5.8 kW power range. The hysteresis of TiO-N thin film as a function of discharge voltage wasn't observed in 1.2 and 2.9kW of applied power. Cross sections and surfaces of thin films by FE-SEM were tiny and dense particle sizes of both films with normal cylindrical structures. XRD pattern of $TiO_2$ and TiO-N thin films was appeared by only anatase peak. Red shift in UV-Vis adsorption spectra was investigated TiO-N thin film. Photoactivity was evaluated by removal rate measurement of suncion yellow among reactive dyes. The photodegradation rate of $TiO_2$ thin film on visible radiation was shown little efficiency but TiO-N was about 18%.

도시지역 비점오염원 관리를 위한 SWMM의 적용 -포항시를 대상으로- (Application of SWMM for Management of the Non-point Source in Urban Area -Case Study on the Pohang City-)

  • 이재용;장성호;박진식
    • 한국환경보건학회지
    • /
    • 제34권3호
    • /
    • pp.247-254
    • /
    • 2008
  • Non-point source pollution that originates from surface applied chemicals in either liquid or solid form is a part of urban activities and it appears in the surface runoff caused by rainfall. This study investigates the characteristics of non point source pollution in relation to storm events and the first washing effect in the Study area, which is comprised of different land use types. Then, a Best Management Practices (BMP) model, for urban areas, is applied with the Storm water Management Model (SWMM) Windows Interface which was developed by the EPA in the USA. During the storm event analysis of the hydrographic and pollutographic data showed that the peak of pollutants concentration was within the peak flow, 30 to 60 minute into the storm event in the Study area. The results of simulation using SWMM Windows Interface, Structure Techniques as applied in the study were highly efficient for removal of pollutants. Predicted removal efficiency was 26.0% for SS, 22.1 for BOD, 24.1% for COD, 20.6% for T-N, and 21.6% for T-P, respectively.

Sequencing Batch Reactor (SBR)를 이용한 질산화와 탈질산화 (Nitrification and Denitrification by Using a Sequencing Batch Reactor System)

  • 박종호;이원호;조규석;황규덕
    • 한국수산과학회지
    • /
    • 제36권3호
    • /
    • pp.247-253
    • /
    • 2003
  • Sequencing Batch Reactor (SBR) was operated under various experimental conditions to improve the efficiency of biological filters used for the treatment of recycled wastewater from aquaculture. This SBR system was operated for removing COD, ammonia and suspended solid that were the major pollutants in aquaculture wastewater. Aerobic and anoxic conditions after FILL mode were applied intermittently for effective removal of nitrogen. SETTLE and DRAW modes were followed by the complete aerobic and anoxic REACT mode. The total volume of the SBR was 75 liter, while the working volume in a cycle was 35 liters. When the final operating strategy of the SBR was FILL/REACT/SETTLE/DRAW of 0.5/10/1/0.5 hr. the removal efficiencies of TCODcr, $NH_{4}^{+}-N,$ and T-N were 94, 98, and $89\%,$ respectively.

Jet Loop 반응기를 이용한 화학비료폐수의 생물학적 질소제거 연구 (A Study on the Biological Nitrogen Removal of the Chemical Fertilizer Wastewater Using Jet Loop Reactor)

  • 서종환;이철승
    • 한국환경과학회지
    • /
    • 제14권2호
    • /
    • pp.157-165
    • /
    • 2005
  • This study was conducted to determine optimum design parameters in nitrification and denitrfication of chemical fertilizer wastewater using pilot plant, Jet Loop Reactor. The chemical fertilizer wastewater which contains low amounts of organic carbon and has a high nitrogen concentration requires a post-denitrfication system. Organic nitrogen is hydrolyzed above $86\%$, and the concentration of organic nitrogen was influent wastewater 126mg/L and of effluent wastewater 16.4mg/L, respectively. The nitrification above $90\%$ was acquired to TKN volumetric loading below $0.5\;kgTKN/m^3{\cdot}d$, TKN sludge loading below $0.1\;kgTKN/kgVSS{\cdot}d$ and SRT over 8days. The nitrification efficiency was $90\%$ or more and the maximum specific nitrification rate was $184.8\;mgTKN/L{\cdot}hr$. The denitrification rate was above $95\%$ and the concentration of $NO_3-N$ was below 20mg/L. This case was required to $3\;kgCH_3OH/kgNO_3-N$, and the effluent concentration of $NO_3^--N$ was below 20mg/L at $NO_3^--N$ volumetric loading below $0.7\;kgNO_3^--N/m^3{\cdot}d$ and v sludge loading below $0.12\;kgNO_3^-N/kgVSS{\cdot}d$. At this case, the maximum sludge production was $0.83\;kgTS/kgT-N_{re}$ and the specific denitrfication rate was $5.5\;mgNO_3-N/gVSS{\cdot}h$.

UV/GAC 흡착산화 공법을 이용한 원자력 발전소 2차 계통 냉각수로부터 발생하는 에탄올 아민 함유 폐수처리 (Treatment of Wastewater Containing Ethanolamine from Coolant of the Secondary System of Nuclear Power Plant by UV/GAC Adsorption Oxidation Method)

  • 최민준;김한수
    • 공업화학
    • /
    • 제28권3호
    • /
    • pp.318-325
    • /
    • 2017
  • 원자력발전소 2차 계통수에 사용되는 에탄올아민이 포함된 오염수는 복수탈염설비의 이온교환수지에서 포집된다. 이온교환수지의 재생과정에서 에탄올아민과 다량의 이온성 물질이 포함된 강산성 폐수가 발생된다. 본 연구는 이온교환수지에서 발생하는 폐수를 처리하기 위해서 자외선 산화방법을 적용하였다. 산화방법은 흡착제를 함께 사용한 자외선 산화와 흡착제를 적용하지 않고 자외선 산화만 적용할 수 있는 장치를 개발하여 자외선 산화방법에서 흡착제가 폐수처리 성능에 미치는 영향을 파악하였다. 연구 결과는 입상활성탄을 흡착제로 적용한 UV/GAC산화공정은 pH 12.8에서 COD 제거 효율은 71.3%로 나타났다. 동일한 pH 조건에서 흡착제를 적용하지 않은 UV 산화공정보다 COD 제거 효율이 21.8% 높게 나타났다. T-N의 제거는 pH 12.8일 때 88.6%로 흡착제를 적용하지 않은 UV산화공정보다 18.0% 높게 나타났다. 이와 같은 결과는 입상활성탄이 에탄올아민을 고정시켜서, UV 램프에 의한 산화공정의 효율을 높이는 것으로 여겨진다. 따라서 UV/GAC 흡착산화공정이 에탄올아민 함유 폐수의 처리에 더 효율적이다.

생물반응기를 도입한 돈분뇨의 생물학적 처리공정에서 악취발생 특성 및 미생물동정에 관한 연구 (A Study on the Odor Characteristics and Identification of Microbial in Biological Swine Manure Treatment Process by Bioreactor)

  • 고준일;박귀환;배주순;오길영;정선용
    • 대한환경공학회지
    • /
    • 제37권9호
    • /
    • pp.526-532
    • /
    • 2015
  • 유기성폐수 처리공정에서 악취발생농도가 높을 것으로 예상되는 양돈분뇨 처리공정에 pellet과 stone을 충진한 생물 반응기를 도입하고 대조시설로서 생물반응기를 도입하지 않는 활성슬러지법 공정과 비교하여 반응조 운전상태, 처리수질, 악취발생농도를 측정하였다. 거품발생, 처리수 투시도 등에서 생물반응기를 도입한 반응조가 훨씬 안정적인 모습을 보였으며 BOD 제거효율도 우수하였다. 반면, 총질소(T-N), 총인(T-P) 제거효율은 두 개의 반응조가 큰 차이를 보이지 않아 방류수 수질기준을 만족시키기 위해서는 별도의 고도처리를 하여야 할 것으로 나타났다. 악취는 암모니아성 질소, 암모니아 농도, 복합악취를 기준으로 살펴본 결과 생물반응기를 도입한 공정이 활성슬러지 공정보다 적게는 4배에서 최대 24배 이상 낮게 나타나 악취원인물질 발생이 적은 것으로 나타났다. 황화수소, 메틸머캅탄, 디메틸설파이드, 디메틸디설파이드 농도는 각각의 반응조 모두 검출되지 않거나 5 ppb에 불과하였으며 두 반응조의 차이 또한 크지 않는 것으로 나타났다. 생물반응기 공정에서는 주로 Bacillus sp./ Pseudomonas sp. 종이 주를 이루고 활성슬러지 공정에서는 Bacterium sp. Chryseobacterium sp. 종이 주를 이루었다.

Membrane Filter를 이용한 수산물 가공폐수처리에 대한 연구 (Research of Sea Food Wastewater Treatment using Membrane Filter)

  • 한동준
    • 환경위생공학
    • /
    • 제22권4호
    • /
    • pp.119-130
    • /
    • 2007
  • Sea food wastewater including high concentration of organics and nutrients is hard to treat stably by established traditional activated sludge process. This research is aimed to obey more and more of strengthened the law and to secure stable effluents by using advanced treatment process applied membrane filter in aeration tank for treatment of wastewater from marine products. It must maintain pH of influent over 6.0 to keep up stably biological sludge of advanced treatment process. At 38hr of HRT, removal rates of TBOD and TCOD were 99.9% and 99.4% respectively and TSS also removed with high efficiency. Most organics in the effluent was constituted with soluble type materials, it caused that membrane filter installed aeration tank should remove minute suspended particles. The reactor was operated well to get stable treatment results for operation period, in spite of high loading of organics like that $0.67{\sim}1.67\;kgTBOD/m^3/day$ of organics loading and $0.10{\sim}0.21\;kgBOD_5/kgMLSS/day$ of F/M ratio. At $36{\sim}48hr$ of HRT, removal rates of T-N and T-P were $89.7{\sim}90.7%\;and\;91.5{\sim}96.0%$ respectively. It means this treatment process also work to remove nutrients of high concentration. Upon investigation of advanced treatment's operation factors, optimum SRT was about 30days and average SNR that showed tendency to increase according to increase water temperature was calculated 0.014 gN/g MLVSS/d. SDNR was risen in conformity to increase F/M ratio of Non-aeration tank and investigated as $0.038{\sim}0.051\;gN/gMLVSS/d$.

수생식물에 의한 축산폐수의 오염물질 감소 효과 (The Effect of Clarification by Aquatic Plant on Livestock Wastewater)

  • 정광화;김원호;김맹중;서성;최기춘;조영무;김영근
    • 한국축산시설환경학회지
    • /
    • 제6권2호
    • /
    • pp.83-89
    • /
    • 2000
  • In general, livestock wastewater consists of many pollutants such as nitrogen, phosphorus, carbonic compounds and inorganic substances. Most carbonic and organic compounds are sufficiently removed by conventional secondary processes, but nitrogen, phosphorus and soluble inorganic compounds are little removed by traditional clarification process. These remained substances in wastewater, for instances, phosphorus and nitrogen are efficiently eliminated by advanced wastewater treatment or botanical removing process. Concentrations of $BOD_s$, SS, T-N and T-P in influent livestock wastewater used in this study were 126mg/l, 115mg/l, 45mg/l and 13mg/l, respectively. The hydraulic retention time(HRT) of wastewater was about 10 days in the pond packed with aquatic plants. A water-hyacinth and a water-dropwort were used as an experimental stuff plant. The removal ratios of nitrogen was 44.3% for the water-hyacinth and 40.2% for the water-dropwort. The removal efficiency of phosphorus in experimental ponds reached by 57.9% for the water-hyacinth and 58.5% for the water-dropwort for 10 days, respectively. Removal ratios of BODs and SS of livestock wastewater for 10 days were reached by 80.1%, 91.0% for he water-hyacinth, respectively. At the same condition, the removal ratios of BODs and SS were reached by 75.0%, 87.6% for the water-dropwort, respectively.

  • PDF

다목적 여과저류지에서 여과수의 산출율과 수질개선도에 관한 실험연구 (An Experimental Study on the Production Rate and Contaminant Removal of Filtrate in Multi-purpose Filtration Pond)

  • 정재민;최홍규;정관수;김승현
    • 대한환경공학회지
    • /
    • 제35권7호
    • /
    • pp.518-524
    • /
    • 2013
  • 다목적 여과저류지에서 모래여재의 여과수 여과능, 적정한 표층폐색 제거주기 그리고 오염제거효율 등 설계와 운영요소를 파악하기 위하여 서로 다른 3가지 입경의 낙동강 준설토를 채운 파일럿 규모의 테스트베드를 운영하였으며, 여과저류지에서의 다양한 인공하천의 유속을 모사하기 위하여 표류수 유속을 0~40 cm/sec로 단계적으로 변화시켰다. 운영결과 여재표층의 슬러지를 7~13일의 주기로 제거함으로써 여과수량을 5~3 $m^3/m^2-day$로 유지할 수 있었고, 여과수량과 여재입경 그리고 표류수 유속 등의 차이에 의한 여과수의 수질차이가 없음을 알 수 있었다. 대부분의 오염제거는 표층 50 cm 부근에서 발생함을 알 수 있었고, 여과거리 2.4 m에서의 오염제거율은 탁도 80~95%, COD 20~30%, BOD 75~90%, T-N 5~20% 그리고 T-P 20~60%로, 주로 입자성 오염물의 제거율이 높은 것으로 나타났다.