• Title/Summary/Keyword: T -cell

Search Result 6,885, Processing Time 0.044 seconds

Effect of Lonicerae Japonicae Flos on Bone Density in Ovariectomized Rat Model of Osteoporosis (난소 적출 흰쥐 골다공증 모델에서 금은화(金銀花)가 골밀도 증가에 미치는 효과)

  • Lee, SungYub;Kim, Minsun;Hong, SooYeon;Kim, Jae-Hyun;Kim, Hongsik;Lee, Chungho;Jung, Hyuk-Sang;Sohn, Youngjoo
    • The Korea Journal of Herbology
    • /
    • v.36 no.5
    • /
    • pp.81-91
    • /
    • 2021
  • Objectives : Osteoporosis is a systemic skeletal disease that decreases bone density and increases the risk of fractures. Bisphosphonates and SERMs are mainly used to treat osteoporosis, but, long-term use increases the risk of side effects such as jaw bone necrosis and breast cancer. Therefore, it is necessary to develop a therapeutic agent for a natural product with few side effects. Water extract of Lonicerae Japonicae Flos (wLF) was mainly found to have anti-cancer and anti-inflammatory effects. However, the effect of wLF on osteoporosis has not been elucidated. Therefore, this experiment investigated the effect of wLF on osteoclasts, osteoblasts and osteoporosis models. Methods : In order to study the effect of wLF on osteoporosis, the OVX-induced rat model was used for in vivo study. After 8 weeks, we measured body weight, uterine weight, liver weight, femur weight, bone density, trabecular area and tibia ash weight. To determine the effect of wLF on osteoclast differentiation, we measured the number of TRAP-positive cells and TRAP activity. To examine the effect of wLF on the expression of osteoblast-related genes, we measured the mRNA expression of alkaline phosphatase (ALP, Alpl) and osteocalcin (OCN, Bglap2). Results : In vivo experiment, wLF inhibited the reduction of femur weight, trabecular area, bone density and tibia ash weight. In vitro experiment, wLF had no significant effect on osteoclast differentiation. However, wLF increased the mRNA expression of Alpl and Bglap2 in MC3T3-E1 cell. Conclusions : This result suggested that wLF may be used for the treatment and prevention of postmenopausal osteoporosis.

Extract from the branches of Rhamnus yoshinoi exerts anti-cancer effects on human prostate cancer cells through Wnt/β-catenin proteasomal degradation and identification of compounds by GC/MS (짝자래나무[Rhamnus yoshinoi] 가지 추출물에 의한 전립선암세포의 Wnt/β-catenin 분해 유도 활성 및 GC/MS 분석)

  • Kang, Yeongyeong;Eo, Hyun Ji;Kim, Da Som;Park, Youngki;Park, Gwang Hun
    • Journal of Plant Biotechnology
    • /
    • v.48 no.2
    • /
    • pp.106-114
    • /
    • 2021
  • We evaluated the anti-cancer activity against human prostate cancer cells and the associated molecular mechanism of extracts from the branches of Rhamnus yoshinoi (RYB). Treatment with RYB suppressed viability of human prostate cancer cells (PC-3) and decreased protein levels of both β-catenin and T-cell factor 4 (TCF4). This was reflected in reduced TCF4 mRNA, but not decreased β-catenin mRNA. PC-3 cells were pretreated with the proteosome inhibitor MG132 before treatment with RYB, which blocked RYB-mediated down regulation of β-catenin in PC-3 cells, thus confirming that RYB promotes the proteasomal degradation of β-catenin. RYB induced β-catenin phosphorylation, and GSK-3β inhibition by LiCl blocked the phosphorylation and proteasomal degradation of β-catenin by RYB. These results suggest that GSK-3β may be an important upstream kinase for RYB-mediated regulation of β-catenin. Finally, GC/MS analysis of RYB identified 18 compounds. Based on these findings, RYB shows potential for development as a therapeutic agent for prostate cancer.

Mechanisms of Resorcinol Antagonism of Benzo[a]pyrene-Induced Damage to Human Keratinocytes

  • Lee, Seung Eun;Kwon, Kitae;Oh, Sae Woong;Park, Se Jung;Yu, Eunbi;Kim, Hyeyoun;Yang, Seyoung;Park, Jung Yoen;Chung, Woo-Jae;Cho, Jae Youl;Lee, Jongsung
    • Biomolecules & Therapeutics
    • /
    • v.29 no.2
    • /
    • pp.227-233
    • /
    • 2021
  • Benzo[a]pyrene (B[a]P) is a polycyclic aromatic hydrocarbon and ubiquitous environmental toxin with known harmful effects to human health. Abnormal phenotypes of keratinocytes are closely associated with their exposure to B[a]P. Resorcinol is a component of argan oil with reported anticancer activities, but its mechanism of action and potential effect on B[a]P damage to the skin is unknown. In this study, we investigated the effects of resorcinol on B[a]P-induced abnormal keratinocyte biology and its mechanisms of action in human epidermal keratinocyte cell line HaCaT. Resorcinol suppressed aryl hydrocarbon receptor (AhR) activity as evidenced by the inhibition of B[a]P-induced xenobiotic response element (XRE)-reporter activation and cytochrome P450 1A1 (CYP1A1) expression. In addition, resorcinol attenuated B[a]P-induced nuclear translocation of AhR, and production of ROS and pro-inflammatory cytokines. We also found that resorcinol increased nuclear factor (erythroid-derived 2)-like 2 (Nrf2) activity. Antioxidant response element (ARE)-reporter activity and expression of ARE-dependent genes NAD(P)H dehydrogenase [quinone] 1 (NQO1), heme oxygenase-1 (HO-1) were increased by resorcinol. Consistently, resorcinol treatment induced nuclear localization of Nrf2 as seen by Western analysis. Knockdown of Nrf2 attenuated the resorcinol effects on ARE signaling, but knockdown of AhR did not affect resorcinol activation of Nrf2. This suggests that activation of antioxidant activity by resorcinol is not mediated by AhR. These results indicate that resorcinol is protective against effects of B[a]P exposure. The mechanism of action of resorcinol is inhibition of AhR and activation of Nrf2-mediated antioxidant signaling. Our findings suggest that resorcinol may have potential as a protective agent against B[a]P-containing pollutants.

Protective Effects of Novel Tripeptide Against Particulate Matter-induced Damage in HaCaT Keratinocytes (미세먼지에 의해 유발되는 인간각질형성세포 손상에 대한 신규 트리펩타이드의 보호 효과)

  • Lee, Eung Ji;Kang, Hana;Hwang, Bo Byeol;Lee, Young Min;Chung, Yong Ji;Kim, Eun Mi
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.47 no.1
    • /
    • pp.75-84
    • /
    • 2021
  • In this study, we investigated inhibitory effect of Tripeptide against particulate matter (PM)-induced damage in human keratinocytes. PM-induced cell death was inhibited by Tripeptide and the activity of aryl hydrocarbon receptor (AhR) also inhibited by Tripeptide resulting in reduced expression of its downstream targets, cytochrome P450 family 1 subfamily A member 1 (CYP1A1) and cyclooxygenase-2 (COX-2), which are responsible for toxic metabolites production and inflammation. Furthermore, PM-induced expressions of pro-inflammatory cytokines, matrix metalloproteinase-1 (MMP-1) and apoptosis-related factors were decreased by anti-oxidant activity of Tripeptide. From these results, it has been shown that the Tripeptide has protective effect against PM-induced skin damage not only through the inhibiting of keratinocyte death but also through the inhibiting the secretion of several damage-inducing factors to adjacent skin tissue. And the results suggested that Tripeptide with anti-pollution effect could be applied as a new functional cosmetic material.

Optimal Ratio of Wnt3a Expression in Human Mesenchymal Stem Cells Promotes Axonal Regeneration in Spinal Cord Injured Rat Model

  • Yoon, Hyung Ho;Lee, Hyang Ju;Min, Joongkee;Kim, Jeong Hoon;Park, Jin Hoon;Kim, Ji Hyun;Kim, Seong Who;Lee, Heuiran;Jeon, Sang Ryong
    • Journal of Korean Neurosurgical Society
    • /
    • v.64 no.5
    • /
    • pp.705-715
    • /
    • 2021
  • Objective : Through our previous clinical trials, the demonstrated therapeutic effects of MSC in chronic spinal cord injury (SCI) were found to be not sufficient. Therefore, the need to develop stem cell agent with enhanced efficacy is increased. We transplanted enhanced Wnt3-asecreting human mesenchymal stem cells (hMSC) into injured spines at 6 weeks after SCI to improve axonal regeneration in a rat model of chronic SCI. We hypothesized that enhanced Wnt3a protein expression could augment neuro-regeneration after SCI. Methods : Thirty-six Sprague-Dawley rats were injured using an Infinite Horizon (IH) impactor at the T9-10 vertebrae and separated into five groups : 1) phosphate-buffered saline injection (injury only group, n=7); 2) hMSC transplantation (MSC, n=7); 3) hMSC transfected with pLenti vector (without Wnt3a gene) transplantation (pLenti-MSC, n=7); 4) hMSC transfected with Wnt3a gene transplantation (Wnt3a-MSC, n=7); and 5) hMSC transfected with enhanced Wnt3a gene (1.7 fold Wnt3a mRNA expression) transplantation (1.7 Wnt3a-MSC, n=8). Six weeks after SCI, each 5×105 cells/15 µL at 2 points were injected using stereotactic and microsyringe pump. To evaluate functional recovery from SCI, rats underwent Basso-Beattie-Bresnahan (BBB) locomotor test on the first, second, and third days post-injury and then weekly for 14 weeks. Axonal regeneration was assessed using growth-associated protein 43 (GAP43), microtubule-associated protein 2 (MAP2), and neurofilament (NF) immunostaining. Results : Fourteen weeks after injury (8 weeks after transplantation), BBB score of the 1.7 Wnt3a-MSC group (15.0±0.28) was significantly higher than that of the injury only (10.0±0.48), MSC (12.57±0.48), pLenti-MSC (12.42±0.48), and Wnt3a-MSC (13.71±0.61) groups (p<0.05). Immunostaining revealed increased expression of axonal regeneration markers GAP43, MAP2, and NF in the Wnt3a-MSC and 1.7 Wnt3a-MSC groups. Conclusion : Our results showed that enhanced gene expression of Wnt3a in hMSC can potentiate axonal regeneration and improve functional recovery in a rat model of chronic SCI.

Effect of blended protein nutritional support on reducing burn-induced inflammation and organ injury

  • Yu, Yonghui;Zhang, Jingjie;Wang, Jing;Wang, Jing;Chai, Jiake
    • Nutrition Research and Practice
    • /
    • v.16 no.5
    • /
    • pp.589-603
    • /
    • 2022
  • BACKGROUND/OBJECTIVES: Previous studies have reported that protein supplementation contributes to the attenuation of inflammation. Serious trauma such as burn injury usually results in the excessive release of inflammatory factors and organs dysfunction. However, a few reports continued to focus on the function of protein ingestion in regulating burn-induced inflammation and organ dysfunction. MATERIALS/METHODS: This study established the rat model of 30% total body surface area burn injury, and evaluated the function of blended protein (mixture of whey and soybean proteins). Blood routine examination, inflammatory factors, blood biochemistry, and immunohistochemical assays were employed to analyze the samples from different treatment groups. RESULTS: Our results indicated a decrease in the numbers of white blood cells, monocytes, and neutrophils in the burn injury group administered with the blended protein nutritional support (Burn+BP), as compared to the burn injury group administered normal saline supplementation (Burn+S). Expressions of the pro-inflammatory factors (tumor necrosis factor-α and interleukin-6 [IL-6]) and chemokines (macrophage chemoattractant protein-1, regulated upon activation normal T cell expressed and secreted factor, and C-C motif chemokine 11) were dramatically decreased, whereas anti-inflammatory factors (IL-4, IL-10, and IL-13) were significantly increased in the Burn+BP group. Kidney function related markers blood urea nitrogen and serum creatinine, and the liver function related markers alanine transaminase, aspartate aminotransferase, alkaline phosphatase, and lactate dehydrogenase were remarkably reduced, whereas albumin levels were elevated in the Burn+BP group as compared to levels obtained in the Burn+S group. Furthermore, inflammatory cells infiltration of the kidney and liver was also attenuated after burn injury administered with blended protein supplementation. CONCLUSIONS: In summary, nutritional support with blended proteins dramatically attenuates the burn-induced inflammatory reaction and protects organ functions. We believe this is a new insight into a potential therapeutic strategy for nutritional support of burn patients.

The Application of NIRS for Soil Analysis on Organic Matter Fractions, Ash and Mechanical Texture

  • Hsu, Hua;Tsai, Chii-Guary;Recinos-Diaz, Guillermo;Brown, John
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1263-1263
    • /
    • 2001
  • The amounts of organic matter present in soil and the rate of soil organic matter (SOM) turnover are influenced by agricultural management practice, such as rotation, tillage, forage plow down direct seeding and manure application. The amount of nutrients released from SOM is highly dependent upon the state of the organic matter. If it contains a large proportion of light fractions (low-density) more nutrients will be available to the glowing crops. However, if it contains mostly heavy fractions (high-density) that are difficult to breakdown, then lesser amounts of nutrients will be available. The state of the SOM and subsequent release of nutrients into the soil can be predicted by NIRS as long as a robust regression equation is developed. The NIRS method is known for its rapidity, convenience, simplicity, accuracy and ability to analyze many constituents at the same time. Our hypothesis is that the NIRS technique allows researchers to investigate fully and in more detail each field for the status of SOM, available moisture and other soil properties in Alberta soils for precision farming in the near future. One hundred thirty one (131) Alberta soils with various levels (low 2-6%, medium 6-10%, and high >10%) of organic matter content and most of dry land soils, including some irrigated soils from Southern Alberta, under various management practices were collected throughout Northern, Central and Southern Alberta. Two depths (0- 15 cm and 15-30 cm) of soils from Northern Alberta were also collected. These air-dried soil samples were ground through 2 mm sieve and scanned using Foss NIR System 6500 with transport module and natural product cell. With particle size above 150 microns only, the “Ludox” method (Meijboom, Hassink and van Noorwijk, Soil Biol. Biochem.27: 1109-1111, 1995) which uses stable silica, was used to fractionate SOM into light, medium and heavy fractions with densities of <1.13, 1.13-1.37 and >1.37 respectively, The SOM fraction with the particle size below 150 microns was discarded because practically, this fraction with very fine particles can't be further separated by wet sieving based on density. Total organic matter content, mechanical texture, ash after 375$^{\circ}C$, and dry matter (DM) were also determined by “standard” soil analysis methods. The NIRS regression equations were developed using Infra-Soft-International (ISI) software, version 3.11.

  • PDF

A Bivalent Inactivated Vaccine Prevents Enterovirus 71 and Coxsackievirus A16 Infections in the Mongolian Gerbil

  • Eun-Je Yi;Young-In Kim;Seung-Yeon Kim;Sung Hyun Ahn;Hyoung Jin Lee;Bohyun Suh;Jaelim Yu;Jeehye Park;Yoon Jung Lee;Eunju Jung;Sun-Young Chang
    • Biomolecules & Therapeutics
    • /
    • v.31 no.3
    • /
    • pp.350-358
    • /
    • 2023
  • Hand-foot-and-mouth disease (HFMD) is a viral infectious disease that occurs in children under 5 years of age. Its main causes are coxsackievirus (CV) and enterovirus (EV). Since there are no efficient therapeutics for HFMD, vaccines are effective in preventing the disease. To develop broad coverage against CV and EV, the development of a bivalent vaccine form is needed. The Mongolian gerbil is an efficient and suitable animal model of EV71 C4a and CVA16 infection used to investigate vaccine efficacy following direct immunization. In this study, Mongolian gerbils were immunized with a bivalent inactivated EV71 C4a and inactivated CVA16 vaccine to test their effectiveness against viral infection. Bivalent vaccine immunization resulted in increased Ag-specific IgG antibody production; specifically, EV71 C4a-specific IgG was increased with medium and high doses and CVA16-specific IgG was increased with all doses of immunization. When gene expression of T cell-biased cytokines was analysed, Th1, Th2, and Th17 responses were found to be highly activated in the high-dose immunization group. Moreover, bivalent vaccine immunization mitigated paralytic signs and increased the survival rate following lethal viral challenges. When the viral RNA content was determined from various organs, all three doses of bivalent vaccine immunization were found to significantly decrease viral amplification. Upon histologic examination, EV71 C4a and CVA16 induced tissue damage to the heart and muscle. However, bivalent vaccine immunization alleviated this in a dose-dependent manner. These results suggest that the bivalent inactivated EV71 C4a/CVA16 vaccine could be a safe and effective candidate HFMD vaccine.

Mutations of Constitutive Activation and Mutations That Impair Signal Transduction Modulate the Agonist-stimulated Internalization of the Lutropin/choriogonadotropin Receptor

  • Park, J.J.;Kim, M.S.;Lee, Y.Y.;H.Y. Kang;Y.M. Chang;Yoon, J.T.;K.S. Min
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.83-83
    • /
    • 2003
  • The lutropin/choriogonadotropin receptor (LHR) is a member of the rhodopsin-like subfamily of G protein coupled receptor (GPCRs), that has been shown to mediate the internalization of its two naturally occurring agonist, lutropin and choriogonadotropin (CG). The clustered agonist-receptor complex is internalized by a dynamin-dependent pathway and traverses the endosomal compartment without agonist dissociation Dissociation of the agonist-receptor complex occurs in the lysosomes, where both the agonist and receptor are degrade. Recently, constitutively activating mutations of the receptor have been identified that are associated with familial male-precocious puberty (FMPP). A FMPP is a form of sexual precocious puberty in boys in which testosterone levels are elevated independent of changes in luteinizing hormone-releasing hormone and serum luteinizing hormone levels, We have now analyzed two naturally occurring, constitutively active mutants of the human LHR. These mutations were introduced into the rat LHR (rLHR) and are designated L435R and D556Y. Cells expressing rLHR-D556Y bind human choriogonadotropin (hCG) with normal affinity, exhibit a 25-fold increase in basal cAMP and respond to hCG with a normal increase in cAMP accumulation. Cells expressing rLHR-L435R also bind hCG with normal affinity, exhibit a 47-fold increase in basal cAMP, and do not respond to hCG with a further increase in cAMP accumulation. This mutation enhances the internalization of the free and agonist-occupied receptors ~2- and ~17- fold, respectively We conclude that the state of activation of the rLHR can modulate its basal and/or agonist-stimulated internalization. Since the internalization of hCG is involved in the termination of hCG actions, we suggest that the lack of responsiveness detected in cells expressing rLHR-L435R is due to the fast rate of internalization of the bound hCG. The finding that membranes expressing rLHR-L435R respond to hCG with an increase in adenylyl cyclase activity supports this suggestion. Autonomous Leydig cell activity in FMPP is caused by a constitutively activating LH/CGR.

  • PDF

Studies on Cryopreservation of D-shaped and Umbo Larvae of Arkshel1(Scapharca broughtonii)

  • K.H. Kang;K. H. Kho;Z.T. Chen;Kim, Y.H.;Kim, J.M.
    • Proceedings of the Korean Society of Developmental Biology Conference
    • /
    • 2003.10a
    • /
    • pp.72-72
    • /
    • 2003
  • The present study examined the possibility of cryopreservation of the D-shaped and umbo larvae of arkshell (Scapharca broughtonii), in terms of the survival rates after freezing and thawing. D-shaped and umbo larvae of arkshells were obtained from a shellfish farming on Yosu city. The average shell lengths were $93.3 \pm 10.1 \mu$m and $201.7 \pm 13.5 \mu$, respectively. Five cryoprotectants (CPAs), dimethyl sulfoxide (DMSO), glycerol, ethylene glycol (EG), propylene glycol (PG), and methanol, were tested at the concentrations of 1.5, 2.0 and 2.5 M. After larvae suspended in CPAs, cryoprotectants were loaded in 0.5 ml straws at a larval density of 50-100 larvae per straw, and epuilibrated for 10 and 20 minute at room temperature ($23^{\circ}C$), repectively. Straws were cooled at a rate of $1^{\circ}C$/min from $0^{\circ}C$ to $-12^{\circ}C$, held for 5 min at $-12^{\circ}C$, and then cooled at $2^{\circ}C$/min to $-35^{\circ}C$ and equilibrated for 5 min followed by plunging in liquid nitrogen. After storage in liquid nitrogen for 1 day, straws were thawed in a $30^{\circ}C$ water. As soon as straws were observed to melt, larvae were diluted with an equal volume of ASW and then washed twice with a large volume of ASW at an interval of 2 min to unload the CPAs. The results showed that after equilibration for 10 and 20 minute at room temperature, no larvae survived using methanol as CPAs, and it was observed that larval shells all open slightly, and larval flesh broke down and slopped over the shells. The highest survival rates (D-shaped larvae: 77.6%, umbo larvae: 59.3%) were obtained with 2M DMSO, and 1.5M glycerol yielded survival rates of 53.8% for D-shaped larvae and 37.5% for umbo larvae. The surviving D-shaped larvae showed active rotary motion and perfect membrane integrity and cytoplasmic normality, and the vigorous movement of veliger cilia was observed inside the closed shells. The breakdown of tissue occurred in the abnormal larvae, and the isolated cell often run out of shells.

  • PDF