DOI QR코드

DOI QR Code

미세먼지에 의해 유발되는 인간각질형성세포 손상에 대한 신규 트리펩타이드의 보호 효과

Protective Effects of Novel Tripeptide Against Particulate Matter-induced Damage in HaCaT Keratinocytes

  • 투고 : 2021.01.12
  • 심사 : 2021.02.24
  • 발행 : 2021.03.30

초록

본 연구에서는 3 개의 아미노산으로 이루어진 트리펩타이드의 미세먼지에 의한 인간각질형성세포의 손상 억제 효과에 대해 확인하였다. 실험 결과 트리펩타이드 처리 시 미세먼지에 의한 세포 사멸이 억제되어 생존율 증가가 관찰되었으며, aryl hydrocarbon receptor (AhR) 기전 활성이 억제 되어 독성 대사체 생성과 염증반응에 관여하는 하위 인자인 cytochrome P450 family 1 subfamily A member 1 (CYP1A1) 및 cyclooxygenase-2 (COX-2)의 발현이 저해되었다. 또한 미세먼지에 의한 산화적 스트레스 억제 효과를 나타내어 염증성 사이토카인의 발현을 저해하였고, 피부 구성 단백질의 분해를 유도하는 matrix metalloproteinase-1 (MMP-1)의 발현을 저해하였으며, 세포 사멸 인자의 수준을 저해하였다. 이 결과를 종합해 볼 때, 본 연구의 트리펩타이드는 미세먼지에 의한 인간각질형성세포의 사멸 및 주변 피부 조직의 손상을 유도할 수 있는 기전들을 억제하여 보호 효과를 나타내는 것으로 보인다. 트리펩타이드의 이러한 안티폴루션 효과는 신규 기능성 화장품 소재로 응용될 수 있을 것으로 기대된다.

In this study, we investigated inhibitory effect of Tripeptide against particulate matter (PM)-induced damage in human keratinocytes. PM-induced cell death was inhibited by Tripeptide and the activity of aryl hydrocarbon receptor (AhR) also inhibited by Tripeptide resulting in reduced expression of its downstream targets, cytochrome P450 family 1 subfamily A member 1 (CYP1A1) and cyclooxygenase-2 (COX-2), which are responsible for toxic metabolites production and inflammation. Furthermore, PM-induced expressions of pro-inflammatory cytokines, matrix metalloproteinase-1 (MMP-1) and apoptosis-related factors were decreased by anti-oxidant activity of Tripeptide. From these results, it has been shown that the Tripeptide has protective effect against PM-induced skin damage not only through the inhibiting of keratinocyte death but also through the inhibiting the secretion of several damage-inducing factors to adjacent skin tissue. And the results suggested that Tripeptide with anti-pollution effect could be applied as a new functional cosmetic material.

키워드

참고문헌

  1. D. Yang, X. Yang, F. Deng, and X. Guo, Ambient air pollution and biomarkers of health effect, Adv Exp. Med. Biol., 1017, 59 (2017). https://doi.org/10.1007/978-981-10-5657-4_4
  2. P. E. Schwarze, J. Ovrevik, M. Lag, M. Refsnes, P. Nafstad, R.B. Hetland, and E. Dybing, Particulate matter properties and health effects: consistency of epidemiological and toxicological studies, Hum. Exp. Toxicol., 25(10), 559 (2006). https://doi.org/10.1177/096032706072520
  3. U. Franck, S. Odeh, A. Wiedensohler, B. Wehner, and O. Herbarth, The effect of particle size on cardiovascular disorders--the smaller the worse, Sci. Total Environ., 409(20), 4217 (2011). https://doi.org/10.1016/j.scitotenv.2011.05.049
  4. M. Fuentes, H. R. Song, S. K. Ghosh, D. M. Holland, and J. M. Davis, Spatial association between speciated fine particles and mortality, Biometrics, 62(3), 855 (2006). https://doi.org/10.1111/j.1541-0420.2006.00526.x
  5. J. Krutmann, W. Liu, L. Li, X. Pan, M. Crawford, G. Sore, and S. Seite, Pollution and skin: from epidemiological and mechanistic studies to clinical implications, J. Dermatol. Sci., 76(3), 163 (2014). https://doi.org/10.1016/j.jdermsci.2014.08.008
  6. A. Vierkotter, T. Schikowski, U. Ranft, D. Sugiri, M. Matsui, U. Kramer, and J. Krutmann, Airborne particle exposure and extrinsic skin aging, J Invest Dermatol, 130(12), 2719 (2010). https://doi.org/10.1038/jid.2010.204
  7. K. E. Kim, D. Cho, and H. J. Park, Air pollution and skin diseases: Adverse effects of airborne particulate matter on various skin diseases, Life Sci., 152, 126 (2016). https://doi.org/10.1016/j.lfs.2016.03.039
  8. D. S. Hieda, L. Anastacio da Costa Carvalho, B. Vaz de Mello, E. A. Oliveira, S. Romano de Assis, J. Wu, L. Du-Thumm, C. L. Viana da Silva, D. A. Roubicek, S. S. Maria-Engler, and S. Berlanga de Moraes Barros, Air particulate matter induces skin barrier dysfunction and water transport alteration on a reconstructed human epidermis model, J Invest Dermatol, 140(12), 2343 (2020). https://doi.org/10.1016/j.jid.2020.03.971
  9. A. J. Ghio, M. S. Carraway, and M. C. Madden, Composition of air pollution particles and oxidative stress in cells, tissues, and living systems, J. Toxicol. Environ. Health B. Crit. Rev., 15(1), 1 (2012). https://doi.org/10.1080/10937404.2012.632359
  10. Y. Kumagai, T. Arimoto, M. Shinyashiki, N. Shimojo, Y. Nakai, T. Yoshikawa, and M. Sagai, Generation of reactive oxygen species during interaction of diesel exhaust particle components with NADPH-cytochrome P450 reductase and involvement of the bioactivation in the DNA damage, Free Radic. Biol. Med., 22(3), 479 (1997). https://doi.org/10.1016/S0891-5849(96)00341-3
  11. A. J. Ghio, J. Stonehuerner, R. J. Pritchard, C. A. Piantadosi, D. R. Quigley, K. L. Dreher, and D. L. Costa, Humic-like substances in air pollution particulates correlate with concentrations of transition metals and oxidant generation, Inhal. Toxicol., 8(5), 479 (1996). https://doi.org/10.3109/08958379609005441
  12. T. Xia, P. Korge, J.N. Weiss, N. Li, M.I. Venkatesen, C. Sioutas, and A. Nel, Quinones and aromatic chemical compounds in particulate matter induce mitochondrial dysfunction: implications for ultrafine particle toxicity, Environ. Health Perspect., 112(14), 1347 (2004). https://doi.org/10.1289/ehp.7167
  13. N. Li, M. Hao, R. F. Phalen, W .C. Hinds, and A. E. Nel, Particulate air pollutants and asthma. A paradigm for the role of oxidative stress in PM-induced adverse health effects, Clin. Immunol., 109(3), 250 (2003). https://doi.org/10.1016/j.clim.2003.08.006
  14. G. Tsuji, M. Takahara, H. Uchi, S. Takeuchi, C. Mitoma, Y. Moroi, and M. Furue, An environmental contaminant, benzo(a)pyrene, induces oxidative stress-mediated interleukin-8 production in human keratinocytes via the aryl hydrocarbon receptor signaling pathway, J. Dermatol. Sci., 62(1), 42 (2011). https://doi.org/10.1016/j.jdermsci.2010.10.017
  15. J. H. Epstein, Photocarcinogenesis, skin cancer, and aging, J. Am. Acad. Dermatol., 9(4), 487 (1983). https://doi.org/10.1016/S0190-9622(83)70160-X
  16. R. Speeckaert, M. van Gele, M. M. Speeckaert, J. Lambert, and N. van Geel, The biology of hyperpigmentation syndromes, Pigment Cell Melanoma Res., 27(4), 512 (2014). https://doi.org/10.1111/pcmr.12235
  17. M. B. C. Maymone, H. H. Neamah, E. A. Secemsky, and N. A. Vashi, Correlating the dermatology life quality index and skin discoloration impact evaluation questionnaire tools in disorders of hyperpigmentation, J. Dermatol., 45(3), 361 (2018). https://doi.org/10.1111/1346-8138.14172
  18. T. Pillaiyar, M. Manickam, and V. Namasivayam, Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors, J. Enzyme Inhib. Med. Chem., 32(1), 403 (2017). https://doi.org/10.1080/14756366.2016.1256882
  19. M. L. W. Juhasz and M. K. Levin, The role of systemic treatments for skin lightening, J. Cosmet. Dermatol., 17(6), 1144 (2018). https://doi.org/10.1111/jocd.12747
  20. L. Zhang and T. J. Falla, Cosmeceuticals and peptides, Clin. Dermatol., 27(5), 485 (2009). https://doi.org/10.1016/j.clindermatol.2009.05.013
  21. B. Reddy, T. Jow, and B. M. Hantash, Bioactive oligopeptides in dermatology: Part I, Exp. Dermatol., 21(8), 563 (2012). https://doi.org/10.1111/j.1600-0625.2012.01528.x
  22. A. Kobayashi, K. Sogawa, and Y. Fujii-Kuriyama, Cooperative interaction between AhR.Arnt and Sp1 for the drug-inducible expression of CYP1A1 gene, J. Biol. Chem., 271(21), 12310 (1996). https://doi.org/10.1074/jbc.271.21.12310
  23. J. Wang, J. Huang, L. Wang, C. Chen, D. Yang, M. Jin, C. Bai, and Y. Song, Urban particulate matter triggers lung inflammation via the ROS-MAPK-NF-κB signaling pathway, J. Thorac. Dis., 9(11), 4398 (2017) https://doi.org/10.21037/jtd.2017.09.135
  24. D. Kalafatovic and E. Giralt, Cell-penetrating peptides: design strategies beyond primary structure and amphipathicity, Molecules, 22(11), 1929 (2017). https://doi.org/10.3390/molecules22111929
  25. J. Zhang, X. Wang, V. Vikash, Q. Ye, D. Wu, Y. Liu, and W. Dong, ROS and ROS-mediated cellular signaling, Oxid. Med. Cell. Longev., 2016 article ID: 4350965 (2016).