Browse > Article
http://dx.doi.org/10.15230/SCSK.2021.47.1.75

Protective Effects of Novel Tripeptide Against Particulate Matter-induced Damage in HaCaT Keratinocytes  

Lee, Eung Ji (Caregen R&D center)
Kang, Hana (Caregen R&D center)
Hwang, Bo Byeol (Caregen R&D center)
Lee, Young Min (Caregen R&D center)
Chung, Yong Ji (Caregen R&D center)
Kim, Eun Mi (Caregen R&D center)
Publication Information
Journal of the Society of Cosmetic Scientists of Korea / v.47, no.1, 2021 , pp. 75-84 More about this Journal
Abstract
In this study, we investigated inhibitory effect of Tripeptide against particulate matter (PM)-induced damage in human keratinocytes. PM-induced cell death was inhibited by Tripeptide and the activity of aryl hydrocarbon receptor (AhR) also inhibited by Tripeptide resulting in reduced expression of its downstream targets, cytochrome P450 family 1 subfamily A member 1 (CYP1A1) and cyclooxygenase-2 (COX-2), which are responsible for toxic metabolites production and inflammation. Furthermore, PM-induced expressions of pro-inflammatory cytokines, matrix metalloproteinase-1 (MMP-1) and apoptosis-related factors were decreased by anti-oxidant activity of Tripeptide. From these results, it has been shown that the Tripeptide has protective effect against PM-induced skin damage not only through the inhibiting of keratinocyte death but also through the inhibiting the secretion of several damage-inducing factors to adjacent skin tissue. And the results suggested that Tripeptide with anti-pollution effect could be applied as a new functional cosmetic material.
Keywords
tripeptide; particulate matter; ambient air pollution; aryl hydrocarbon receptor; reactive oxygen species;
Citations & Related Records
연도 인용수 순위
  • Reference
1 N. Li, M. Hao, R. F. Phalen, W .C. Hinds, and A. E. Nel, Particulate air pollutants and asthma. A paradigm for the role of oxidative stress in PM-induced adverse health effects, Clin. Immunol., 109(3), 250 (2003).   DOI
2 G. Tsuji, M. Takahara, H. Uchi, S. Takeuchi, C. Mitoma, Y. Moroi, and M. Furue, An environmental contaminant, benzo(a)pyrene, induces oxidative stress-mediated interleukin-8 production in human keratinocytes via the aryl hydrocarbon receptor signaling pathway, J. Dermatol. Sci., 62(1), 42 (2011).   DOI
3 J. H. Epstein, Photocarcinogenesis, skin cancer, and aging, J. Am. Acad. Dermatol., 9(4), 487 (1983).   DOI
4 R. Speeckaert, M. van Gele, M. M. Speeckaert, J. Lambert, and N. van Geel, The biology of hyperpigmentation syndromes, Pigment Cell Melanoma Res., 27(4), 512 (2014).   DOI
5 M. B. C. Maymone, H. H. Neamah, E. A. Secemsky, and N. A. Vashi, Correlating the dermatology life quality index and skin discoloration impact evaluation questionnaire tools in disorders of hyperpigmentation, J. Dermatol., 45(3), 361 (2018).   DOI
6 T. Pillaiyar, M. Manickam, and V. Namasivayam, Skin whitening agents: medicinal chemistry perspective of tyrosinase inhibitors, J. Enzyme Inhib. Med. Chem., 32(1), 403 (2017).   DOI
7 M. L. W. Juhasz and M. K. Levin, The role of systemic treatments for skin lightening, J. Cosmet. Dermatol., 17(6), 1144 (2018).   DOI
8 L. Zhang and T. J. Falla, Cosmeceuticals and peptides, Clin. Dermatol., 27(5), 485 (2009).   DOI
9 B. Reddy, T. Jow, and B. M. Hantash, Bioactive oligopeptides in dermatology: Part I, Exp. Dermatol., 21(8), 563 (2012).   DOI
10 A. Kobayashi, K. Sogawa, and Y. Fujii-Kuriyama, Cooperative interaction between AhR.Arnt and Sp1 for the drug-inducible expression of CYP1A1 gene, J. Biol. Chem., 271(21), 12310 (1996).   DOI
11 J. Wang, J. Huang, L. Wang, C. Chen, D. Yang, M. Jin, C. Bai, and Y. Song, Urban particulate matter triggers lung inflammation via the ROS-MAPK-NF-κB signaling pathway, J. Thorac. Dis., 9(11), 4398 (2017)   DOI
12 D. Kalafatovic and E. Giralt, Cell-penetrating peptides: design strategies beyond primary structure and amphipathicity, Molecules, 22(11), 1929 (2017).   DOI
13 J. Zhang, X. Wang, V. Vikash, Q. Ye, D. Wu, Y. Liu, and W. Dong, ROS and ROS-mediated cellular signaling, Oxid. Med. Cell. Longev., 2016 article ID: 4350965 (2016).
14 D. Yang, X. Yang, F. Deng, and X. Guo, Ambient air pollution and biomarkers of health effect, Adv Exp. Med. Biol., 1017, 59 (2017).   DOI
15 P. E. Schwarze, J. Ovrevik, M. Lag, M. Refsnes, P. Nafstad, R.B. Hetland, and E. Dybing, Particulate matter properties and health effects: consistency of epidemiological and toxicological studies, Hum. Exp. Toxicol., 25(10), 559 (2006).   DOI
16 U. Franck, S. Odeh, A. Wiedensohler, B. Wehner, and O. Herbarth, The effect of particle size on cardiovascular disorders--the smaller the worse, Sci. Total Environ., 409(20), 4217 (2011).   DOI
17 M. Fuentes, H. R. Song, S. K. Ghosh, D. M. Holland, and J. M. Davis, Spatial association between speciated fine particles and mortality, Biometrics, 62(3), 855 (2006).   DOI
18 J. Krutmann, W. Liu, L. Li, X. Pan, M. Crawford, G. Sore, and S. Seite, Pollution and skin: from epidemiological and mechanistic studies to clinical implications, J. Dermatol. Sci., 76(3), 163 (2014).   DOI
19 A. Vierkotter, T. Schikowski, U. Ranft, D. Sugiri, M. Matsui, U. Kramer, and J. Krutmann, Airborne particle exposure and extrinsic skin aging, J Invest Dermatol, 130(12), 2719 (2010).   DOI
20 K. E. Kim, D. Cho, and H. J. Park, Air pollution and skin diseases: Adverse effects of airborne particulate matter on various skin diseases, Life Sci., 152, 126 (2016).   DOI
21 D. S. Hieda, L. Anastacio da Costa Carvalho, B. Vaz de Mello, E. A. Oliveira, S. Romano de Assis, J. Wu, L. Du-Thumm, C. L. Viana da Silva, D. A. Roubicek, S. S. Maria-Engler, and S. Berlanga de Moraes Barros, Air particulate matter induces skin barrier dysfunction and water transport alteration on a reconstructed human epidermis model, J Invest Dermatol, 140(12), 2343 (2020).   DOI
22 A. J. Ghio, M. S. Carraway, and M. C. Madden, Composition of air pollution particles and oxidative stress in cells, tissues, and living systems, J. Toxicol. Environ. Health B. Crit. Rev., 15(1), 1 (2012).   DOI
23 Y. Kumagai, T. Arimoto, M. Shinyashiki, N. Shimojo, Y. Nakai, T. Yoshikawa, and M. Sagai, Generation of reactive oxygen species during interaction of diesel exhaust particle components with NADPH-cytochrome P450 reductase and involvement of the bioactivation in the DNA damage, Free Radic. Biol. Med., 22(3), 479 (1997).   DOI
24 A. J. Ghio, J. Stonehuerner, R. J. Pritchard, C. A. Piantadosi, D. R. Quigley, K. L. Dreher, and D. L. Costa, Humic-like substances in air pollution particulates correlate with concentrations of transition metals and oxidant generation, Inhal. Toxicol., 8(5), 479 (1996).   DOI
25 T. Xia, P. Korge, J.N. Weiss, N. Li, M.I. Venkatesen, C. Sioutas, and A. Nel, Quinones and aromatic chemical compounds in particulate matter induce mitochondrial dysfunction: implications for ultrafine particle toxicity, Environ. Health Perspect., 112(14), 1347 (2004).   DOI