인터넷 상거래에서, 소비자들은 기존에 제품을 구매한 다른 사용자들이 작성한 상품평에 많은 영향을 받는다. 그러나, 상품평이 점차 축적되어감에 따라, 소비자들이 방대한 상품평을 일일이 확인하는데 많은 시간과 노력이 소요되고, 또한 무성의하게 작성된 상품평들은 오히려 소비자들의 불편을 초래하기도 한다. 이에, 본 연구는 온라인 상품평의 유용성에 영향을 미치는 요인들을 분석하여, 소비자들에게 실제로 도움이 될 수 있는 상품평을 선별적으로 제공하는 예측모형을 도출하는 것을 목적으로 한다. 이를 위해, 텍스트마이닝 기법을 사용하여, 상품평에 포함되어있는 다양한 언어적, 심리적, 지각적 요소들을 추출하였으며, 이러한 요소들 중에서 상품평의 유용성에 영향을 미치는 결정요인이 무엇인지 파악하였다. 특히, 경험재인 의류군과 탐색재인 전자제품군에 대한 상품평의 특성 및 유용성 결정요인이 상이할 수 있음을 고려하여, 제품군별로 상품평의 특성을 비교하고, 각각의 결정요인을 도출하였다. 본 연구에는 아마존닷컴(Amazon.com)의 의류군 상품평 7,498건과 전자제품군 상품평 106,962건이 사용되었다. 또한, 언어분석 소프트웨어인 LIWC(Linguistic Inquiry and Word Count)를 활용하여 상품평에 포함된 특징들을 추출하였고, 이후, 데이터마이닝 소프트웨어인 RapidMiner를 사용하여, 회귀분석을 통한, 결정요인 분석을 수행하였다. 본 연구결과, 제품에 대한 리뷰어의 평가가 높고, 상품평에 포함된 전체 단어 수가 많으며, 상품평의 내용에 지각적 과정이 많이 포함되어 있는 반면, 부정적 감정은 적게 포함된 상품평들이 두 제품 모두에서 유용하다고 인식되는 것을 알 수 있었다. 그 외, 의류군의 경우, 비교급 표현이 많고, 전문성 지수는 낮으며, 한 문장에 포함된 단어 수가 적은 간결한 상품평이 유용하다고 인식되고 있었으며, 전자제품의 경우, 전문성 지수가 높고, 분석적이며, 진솔한 표현이 많고, 인지적 과정과 긍정적 감정(PosEmo)이 많이 포함된 상품평이 유용하게 인식되고 있었다. 이러한 연구결과는 향후, 소비자들이 효과적으로 유용한 상품평들을 확인하는데 도움이 될 것으로 기대된다.