• Title/Summary/Keyword: Systems Design

Search Result 21,958, Processing Time 0.048 seconds

Effects of Hanbag Mushroom(Grifola frondosa) on Oxidative Stress in Diabetic Rats (당뇨유발 흰쥐에 있어서 산화적 스트레스에 대한 함박잎새버섯의 효과)

  • Lee, Soon-Yi;Lee, Chang-Yun;Park, Yeong-Chul;Kim, Jong-Bong
    • Journal of Life Science
    • /
    • v.17 no.11
    • /
    • pp.1571-1575
    • /
    • 2007
  • This research was carried out to investigate the effects of Hambag mushroom on the oxidative stress in diabetic rats, Sprague-Dawley. The diabetic rats induced by streptozotocin were fed with hambag mushroom-powder(G. frondosa) for 6 weeks. For the level of oxidative stress in liver and pancreas tissues, it was studied by measuring LPO (lipid oxide) level as an indicator of lipid peroxidation, XOD(xanthine oxidase) as one of important sources for free radicals and the levels of GSH and GST as anti-oxidant systems. Also, as an indicator of liver damaged by oxidative stress, the activities of serum ALT and AST were measured. It was observed that the levels of ALT, AST, LPO and XOD were higher by about two times in both tissues from diabetic rats than in those from control rats. This indicates that the oxidative stress induced by diabetes caused the tissues damages. However, these levels were decreased in the tissues from rats with hambag mushroom-powder. Futhermore, the activity of GST were higher in both tissues from diabetic rats fed with hambag mushroom-powder than in those from diabetic rats. Thus, it is considered that the hambag mushroom-powder decreases the level of oxidative stress by increasing activity of anti-oxidant system such as GSH and GST. It is suggested that the hambag mushroom-powder can be useful for preventing the tissues damaged by diabetes-induced oxidative stress.

Investigation of the Bond and Deformation Characteristics between an Asphalt layer and a Concrete Slab used as the Trackbed Foundation of an Embedded Rail System for Wireless Trams (무가선 트램용 매립형궤도 아스팔트 포장층의 부착특성 및 변형발생특성 분석)

  • Cho, Hojin;Kang, Yunsuk;Lee, Suhyung;Park, Jeabeom;Lim, Yujin
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.224-233
    • /
    • 2016
  • Embedded Railway Systems (ERS) will be adapted for wireless trams and will be constructed along city roadways. An asphalt layer should be overlaid on top of the concrete slab used as the trackbed structure in order to ensure smoothness and surface levels equal to those of existing road pavement in downtown city areas. However, the characteristics of an asphalt layer when used as overlay pavement for an ERS are complicated and the behavior of this material is not yet well defined and understood. Therefore, in this study, laboratory shear and tensile bond strength tests were conducted to investigate the bonding behavior of an asphalt layer in a multilayered trackbed section of an ERS. For the laboratory tests, a waterproof coating material was selected as a bonding material between the asphalt overlay and a concrete specimen. Valuable design parameters could be obtained based on the tensile and shear bond strength test results, providing information about the serviceability and durability of the overlaid pavements to be constructed alongside the ERS for wireless trams. In addition, a deformation analysis to assess the tensile strain generated due to truck axle loads at the interface between the asphalt layer and the concrete slab was conducted to verify the stability and performance of the asphalt layer.

A Study of SIL Allocation with a Multi-Phase Fuzzy Risk Graph Model (다단계 퍼지 리스크 그래프 모델을 적용한 SIL 할당에 관한 연구)

  • Yang, Heekap;Lee, Jongwoo
    • Journal of the Korean Society for Railway
    • /
    • v.19 no.2
    • /
    • pp.170-186
    • /
    • 2016
  • This paper introduces a multi-phase fuzzy risk graph model, representing a method for determining for SIL values for railway industry systems. The purpose of this paper is to compensate for the shortcomings of qualitative determination, which are associated with input value ambiguity and the subjectivity problem of expert judgement. The multi-phase fuzzy risk graph model has two phases. The first involves the determination of the conventional risk graph input values of the consequence, exposure, avoidance and demand rates using fuzzy theory. For the first step of fuzzification this paper proposes detailed input parameters. The fuzzy inference and the defuzzification results from the first step will be utilized as input parameters for the second step of the fuzzy model. The second step is to determine the safety integrity level and tolerable hazard rate corresponding to be identified hazard in the railway industry. To validate the results of the proposed the multi-phase fuzzy risk graph, it is compared with the results of a safety analysis of a level crossing system in the CENELEC SC 9XA WG A0 report. This model will be adapted for determining safety requirements at the early concept design stages in the railway business.

Development of Three Dimensional Analysis Method of High-Rise Buildings Considering the Construction Sequence and the Inelastic Behavior (시공 단계 및 비탄성거동을 고려한 초고층 건축물의 3차원 해석 기법 개발)

  • Yang, Joo-Kyoung;Seol, Hyun-Cheol;Kim, Jin-Keun
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.2
    • /
    • pp.249-256
    • /
    • 2008
  • With consideration of the ongoing construction of high-rise buildings, it is becoming increasingly important to be able to accurately predict the behavior of them on the stage of design, construction and service. Even though many researchers have developed the analysis method to predict the behavior of high-rise buildings, their studies were based on the two dimensional frame structures composed of line elements such as beams and columns. Recently the high-rise buildings with flat-plate system is widely used because of its advantages. In this study a three dimensional analysis method is developed to analyze the behavior of the high-rise buildings with flat-plate system since it is difficult to model the structural systems reasonably with the existing two dimensional analysis method. The analysis method considered the construction sequence including the temporary work such as installation of form, removal of form, installation of shore, and removal of shore. Line elements were used to describe columns, beams, and shores and plate elements were used to model slabs. The creep and drying shrinkage of concrete were also considered to account for the inelastic behavior of concrete.

Hydrodynamic Properties of Interconnected Fluidized Bed Chemical-Looping Combustors (상호 연결된 유동층 매체 순환식 연소로의 수력학적 특성)

  • Son, Sung Real;Go, Kang Seok;Kim, Sang Done
    • Korean Chemical Engineering Research
    • /
    • v.48 no.2
    • /
    • pp.185-192
    • /
    • 2010
  • The chemical-looping combustion(CLC) has advantages of no energy loss for separation of $CO_2$ without $NO_x$ formation. This CLC system consists of oxidation and reduction reactors where metal oxides particles are circulating through these two reactors. In the present study, the reaction kinetic equations of iron oxide oxygen carriers supported on bentonite have been determined by the shrinking core model. Based on the reactivity data, design values of solid circulation rate and solids inventory were determined for the rector. Two types of interconnected fluidized bed systems were designed for CLC application, one system consists of a riser and a bubbling fluidized bed, and the other one has a riser and two bubbling fluidized beds. Solid circulation rates were varied to about $30kg/m^2s$ by aeration into a loop-seal. Solid circulation rate increases with increasing aeration velocity and it increases further with an auxiliary gas flow into the loop-seal. As solid circulation rate is increased, solid hold up in the riser increases. A typical gas leakage from the riser to the fluidized bed is found to be less than 1%.

The Design and Implementation of Access Control framework for Collaborative System (협력시스템에서의 접근제어 프레임워크 설계 및 구현)

  • 정연일;이승룡
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.27 no.10C
    • /
    • pp.1015-1026
    • /
    • 2002
  • As per increasing research interest in the field of collaborative computing in recent year, the importance of security issues on that area is also incrementally growing. Generally, the persistency of collaborative system is facilitated with conventional authentication and cryptography schemes. It is however, hard to meet the access control requirements of distributed collaborative computing environments by means of merely apply the existing access control mechanisms. The distributed collaborative system must consider the network openness, and various type of subjects and objects while, the existing access control schemes consider only some of the access control elements such as identity, rule, and role. However, this may cause the state of security level alteration phenomenon. In order to handle proper access control in collaborative system, various types of access control elements such as identity, role, group, degree of security, degree of integrity, and permission should be taken into account. Futhermore, if we simply define all the necessary access control elements to implement access control algorithm, then collaborative system consequently should consider too many available objects which in consequence, may lead drastic degradation of system performance. In order to improve the state problems, we propose a novel access control framework that is suitable for the distributed collaborative computing environments. The proposed scheme defines several different types of object elements for the accessed objects and subjects, and use them to implement access control which allows us to guarantee more solid access control. Futhermore, the objects are distinguished by three categories based on the characteristics of the object elements, and the proposed algorithm is implemented by the classified objects which lead to improve the systems' performance. Also, the proposed method can support scalability compared to the conventional one. Our simulation study shows that the performance results are almost similar to the two cases; one for the collaborative system has the proposed access control scheme, and the other for it has not.

Design and Implementation of IEEE 11073/HL7 Translation Gateway Based on U-Healthcare Application Service for M2M (M2M을 위한 U-헬스케어 응용 서비스 기반 IEEE 11073/HL7 변환 게이트웨이 설계 및 구현)

  • Chun, Seung-Man;Nah, Jae-Wook;Park, Jong-Tae
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.36 no.3B
    • /
    • pp.275-286
    • /
    • 2011
  • As the 21st century paradigm of healthcare service changes from post-therapeutic treatment to disease prevention and management in advance, the M2M-based u-healthcare application service is increasingly important. M2M-based u-healthcare application service uses mobile handsets equipped with sensors to measure vital information, and the medical staff in remote locations can manage the health of the patient or the public in real time. In this paper, IEEE/HL7 translation gateway, utilizing the gateway based on M2M u-healthcare application service structure, which is based on international standards, has been designed and implemented. Specifically, the gateway between ISO/IEEE 11073 standards and ANSI HL7 has been developed. The former defines the protocol for the exchange of information between the agent device and the manger devices for measuring and handling biological signal, and the latter defines the application layer protocol for the exchange of various healthcare information systems. Finally, in order to demonstrate the functionality of the proposed architecture, the M2M-based U-healthcare application service based on IEEE/HL7 translation gateway, utilizing the gateway, has been developed which can measure, collect and process a variety of vital signs such as ECG or SpO2.

Extracting Foundation Input Motion Considering Soil-Subterranean Level Kinematic Interaction (지하층-지반 운동학적 상호작용을 고려한 기초저면의 설계지반운동 산정)

  • Sadiq, Shamsher;Yoon, Jinam;Kim, Juhyong;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.11
    • /
    • pp.31-37
    • /
    • 2018
  • Most of tall building systems are composed of above-ground structure and underground structure used for parking and stores. The underground structure may have a pronounced influence on tall building response, but its influence is still not well understood. In a widely referred report on seismic design of tall buildings, it is recommended to model the underground structure ignoring the surrounding ground and to impose input ground motion calculated considering the underground structure-soil kinematic interaction between at its base. In this study, dynamic analyses are performed on 1B and 5B basements. The motions at the base are calculated to free field responses. The motions are further compared to two procedures outlined in the report to account for the kinematic interaction. It is shown that one of the procedure fits well for the 1B model, whereas both procedures provide poor fit with 5B model analysis result.

Stiffness Analysis of External Fixation System with System Configuration Parameters (시스템 구성 인자를 고려한 외고정장치 시스템의 강성 해석)

  • Kim Yoon Hyuk;Lee Hyun Keun
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.531-536
    • /
    • 2004
  • In fracture treatment with external fixators, the inter-fragmentary movements at the fracture site affect the fracture healing process, and these movements are highly related to the stiffness of external fixation systems. Therefore, in order to provide the optimal fracture healing at the fracture site, it is essential to understand the relationship between the stiffness and the system configurations in external fixation system. In this study we investigated the influences of system configuration parameters on the stiffness in the finite element analysis of an external fixation system of a long bone. The system alignment, the geometric and the material non-linearity of the pin, the joint stiffness and the callus formation were considered in the finite element model. In the first, the system stiffness of the developed finite element model was compared with the experiment data for model validation. The consideration of the joint stiffness and nonlinearity of the model improved the system stiffness results. The joint stiffness, the non-alignment of the system decreased the system stiffness while the callus formation increased the system stiffness. The present results provided the biomechanical basis of rational guidelines for design improvements of external fixators and pre-op. planning to maximize the system stiffness in fracture surgery.

Design of an Optimal Adaptive Filter for the Cancellation of M-wave in the EMG Controlled Functional Electrical Stimulation for Paralyzed Individuals (마비환자의 근전도제에기능적전기자극을 위한 M-wave 제거용 최적적응필터 설계)

  • Yeom Hojoon;Park Youngcheol;Lee Younghee;Yoon Youngro;Shin Taemin;Yoon Hyoungro
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.6
    • /
    • pp.479-487
    • /
    • 2004
  • Biopotential signals have been used as command in systems using electrical stimulation of motor nerves to restore movement after an injury to the central nervous system (CNS). In order to use the voluntary EMG (electromyography) among the biopotentials as a control signal for the electrical stimulation of the same muscle for CNS injury patients, it is necessary to remove M-wave of having high magnitude from raw data. We designed an optimal filter for removing the M-wave and preserving the voluntary EMG and showed that the optimal filter is eigen filter. We also proved that the previous method using the prediction error filter(PEF) is a suboptimal filtering in the sense of preserving the voluntary EMG. On basis of the data obtained from a model for M-wave and voluntary EMG and from actual CNS injury patients, with false-positive rate analysis, the proposed adaptive filter showed a very promising performance in comparison with previous method.