DOI QR코드

DOI QR Code

A Study of SIL Allocation with a Multi-Phase Fuzzy Risk Graph Model

다단계 퍼지 리스크 그래프 모델을 적용한 SIL 할당에 관한 연구

  • Yang, Heekap (Department of Electric Traction and Signalling System, Graduate School of Railway, Seoul National University of Science and Technology) ;
  • Lee, Jongwoo (Department of Electric Traction and Signalling System, Graduate School of Railway, Seoul National University of Science and Technology)
  • Received : 2016.04.05
  • Accepted : 2016.04.22
  • Published : 2016.04.30

Abstract

This paper introduces a multi-phase fuzzy risk graph model, representing a method for determining for SIL values for railway industry systems. The purpose of this paper is to compensate for the shortcomings of qualitative determination, which are associated with input value ambiguity and the subjectivity problem of expert judgement. The multi-phase fuzzy risk graph model has two phases. The first involves the determination of the conventional risk graph input values of the consequence, exposure, avoidance and demand rates using fuzzy theory. For the first step of fuzzification this paper proposes detailed input parameters. The fuzzy inference and the defuzzification results from the first step will be utilized as input parameters for the second step of the fuzzy model. The second step is to determine the safety integrity level and tolerable hazard rate corresponding to be identified hazard in the railway industry. To validate the results of the proposed the multi-phase fuzzy risk graph, it is compared with the results of a safety analysis of a level crossing system in the CENELEC SC 9XA WG A0 report. This model will be adapted for determining safety requirements at the early concept design stages in the railway business.

본 논문에서는 철도 시스템에서 안전무결성수준 평가를 위한 다단계 퍼지 리스크 그래프를 제안한다. 본 모델은 입력변수의 모호함과 주관적 전문가 판단의 단점을 보완하는 것을 목적으로 한다. 다단계 퍼지 리스크 그래프 모델은 2단계로 구성된다. 본 논문에서는 첫 번째 퍼지화를 위한 상세 입력 변수가 제안되고 첫 번째 단계에서 퍼지 이론을 적용하여 기존의 리스크 그래프 입력 변수인 심각도, 노출도, 회피도, 요구율을 산정한다. 퍼지 추론 및 역퍼지화 결과 2단계에서 적용할 입력변수가 도출된다. 두 번째 단계에서는 식별된 해당 해저드에 대하여 안전 무결성 수준과 허용 해저드율을 산정하여 안전 요구사항을 수립한다. 또한 다단계 퍼지 리스크 그래프 모델을 검증하기 위해 CENELEC SC 9XA WG A10 보고서에 소개된 건널목 시스템을 대상으로 한 안전성 평가 결과와 비교하여 모델을 검증하였으며, 철도 분야의 초기 개념 설계 단계 안전성 요구사항을 수립 시 적용할 수 있다.

Keywords

References

  1. H. Yang, J. Lee (2016) A study on the SIL allocation for signalling function with the fuzzy risk graph, Journal of the Korean Society for Railway, to be published.
  2. IEC (1997) 61508-5, Functional safety of electrical/electronic programmable electronic safety-related systems Part5, Geneva, pp. 21- 30.
  3. IEC (2003) 61511-3, Functional safety - Safety instrumented systems for the process industry sector- Part3: Guidance for the determination of the required safety integrity levels, Geneva, pp. 33-35.
  4. IEC (2002) 62278, Railway Applications-Specification and Demonstration of Reliability, Availability, Maintainability and Safety(RAMS), Geneva, pp 49-53.
  5. E. Marzal and E. Scharpf (2002) Safety Integrity Selection, The instrumentation, System and Automation Society, pp. 5-28.
  6. Engineering Safety Management(The Yellow Book) (2007) Fundamental and Guidance, Railtrack, Vol. 1&2, NY, pp.198-206.
  7. Didier Dubois and Henri Prade (1987) The Mean Value of Fuzzy Number. Fuzzy Sets and Systems, 24(3), pp. 79-300. https://doi.org/10.1016/0165-0114(87)90115-1
  8. IRSE (2009) Validation of a semi-quantitative approach for railway risk assessments, IRSE NEWS Issue147, Geneva, pp. 8-11.
  9. Korea Transportation Safety Authority (2014) The estimated standard of risk and application plan, Seoul, p. 8.
  10. Safe Prod (2005) Process hazard and risk analysis Risk graph matrix, Process Industry IEC 61511, Geneva, pp. 1-5.
  11. PD CLC/TR (2007) 50451, Railway applications Systematic allocation of safety integrity requirements, Annex B, London, pp. 67-76.