• Title/Summary/Keyword: Systems Biotechnology

Search Result 1,501, Processing Time 0.028 seconds

Physicochemical Properties of Breeding Lines of Colored Barleys (유색보리 육성계통의 이화학적 특성)

  • Choi, Jae-Seong;Park, Soo-Jin;Joung, Yong-Myeon;Kim, Jung-Gon;Won, Mi-Hee;Kang, Myung-Hwa
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.51 no.spc1
    • /
    • pp.125-132
    • /
    • 2006
  • The below is the results of physicochemical analysis of 40 breeding lines of colored barley (CB) whose systems are different Water content of CB No. 24 showed the lowest value of 7.4% while CB No. 9 showed the highest value of 10.8%. Crude protein of CB $9.7{\sim}12.9%$ range was found. Crude fat content of CB No. 6 showed the highest value of 4.35% while CB No. 34 showed the lowest of 1.35%. Crude ash content of CB No. 31 showed the lowest value of 1.20%. Ca content of CB No. 10 showed the highest value of 717.50 mg% while general barley showed the lowest value of 442.82 mg%. Mg content of CB No. 10 showed the highest value of 1320.00 mg%. Cu content of CB No. 20 showed the lowest value of 2.20 mg% while CB No. 33 showed the highest value of 6.25 mg%. K content of CB No. 20 showed the lowest value of 723.24 mg% while CB No. 1 showed the highest value of 1002.50 mg%. Mn content of CB No. 28 showed the lowest value of 31.72 mg% while general barley showed the highest value of 94.56 mg%. ${\beta}-Glucan$ content of CB No. 25 showed the lowest value of 5.20 mg% while CB No. 28 showed the highest value of 4.46 mg%.

Growth Characteristics of Common Ice Plant (Mesembryanthemum crystallinum L.) on Nutrient Solution, Light Intensity and Planting Distance in Closed-type Plant Production System (완전제어형 식물 생산 시스템에서 배양액, 광도 및 재식거리에 따른 Common Ice Plant의 생육 특성)

  • Cha, Mi-Kyung;Park, Kyoung Sub;Cho, Young-Yeol
    • Journal of Bio-Environment Control
    • /
    • v.25 no.2
    • /
    • pp.89-94
    • /
    • 2016
  • This study was conducted to determine the optimum nutrient solution, pH, irrigation interval, light intensity and planting density to growth of common ice plant (Mesembryanthemum crystallinum L.) in a closed-type plant production system. Three-band radiation type fluorescent lamps with a 12-h photoperiod were used. Nutrient film technique systems with three layers were used for the plant growth system. Environmental conditions, such as air temperature, relative humidity and $CO_2$ concentration were controlled by an ON/OFF operation. Treatments were comparison of the nutrient solution of Horticultural Experiment Station in Japan (NHES) and the nutrient solution of Jeju National University (NJNU), pH 6.0 and 7.0, irrigation interval 5 min and 10 min, light intensity 90 and $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$, and within-row spacing 10 cm, 15 cm, 20 cm and 25 cm with between-row spacing 15 cm. Optimum macronutrients were composed N 7.65, P 0.65, K 4.0, Ca 1.6 and Mg $1.0mM{\cdot}L^{-1}$. There were no significant interactions between pH 6.0 and 7.0 about shoot fresh weight and shoot dry weight of common ice plant. Irrigation interval 5 min and 10 min was also the same result. Shoot fresh weight and shoot dry weight were highest at $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$. Shoot fresh weight and shoot dry weight were decreased according to increasing the planting density. From the above results, we concluded that optimum nutrient solution, optimum levels of pH, irrigation interval, light intensity and planting density were 6.0-7.0 and 10 min, $180{\mu}mol{\cdot}m^{-2}{\cdot}s^{-1}$ and $15{\times}15cm$, respectively for growth of common ice plant in a closed-type plant production system.

Virus Disease Incidences and Transmission Ecology of Oriental Melons in Seongju Area (성주지역 참외 바이러스병의 발생실태와 전염생태)

  • Park, Seok-Jin;Lee, Joong-Hwan;Nam, Moon;Park, Chung-Youl;Kim, Jeong-Seon;Lee, Joo-Hee;Jun, Eun-Suk;Lee, Jun-Seong;Choi, Hong-Soo;Kim, Jeong-Soo;Moon, Jae-Sun;Kim, Hong-Gi;Lee, Su-Heon
    • Research in Plant Disease
    • /
    • v.17 no.3
    • /
    • pp.342-350
    • /
    • 2011
  • Throughout the years 2008 to 2010, we analyzed approximately two thousand oriental melon samples collected from Seongju, using electron microscopy and testing by RT-PCR using primers specific for eight cucurbit-infecting viruses. Data from RT-PCR indicated that Cucumber green mottle mosaic virus (CGMMV), Watermelon mosaic virus 2 (WMV2) and Zucchini yellow mosaic virus (ZYMV) were present and the other viruses were not detected. Among them, CGMMV and WMV2 were the most prevalent pathogens. CGMMV was thought to infect oriental melon from the early growing season, and reached nearly 100% in the later of growing period. Otherwise, WMV2 emerged from June, several months later compared to CGMMV. CGMMV was detected from all aerial parts of the oriental melon including seeds, but not from the roots of the grafted pumpkin rootstock. Seed of two out of five commercial varieties were shown to be CGMMV positive. Nine varieties of pumpkins used as rootstocks were not infected with CGMMV. When the seedlings of grafted oriental melon were transplanted into pots mixed with the oriental melon debris infected with CGMMV, they were not infected by CGMMV. Cutting of pruning shear and the contact of tendrils contributed 48% and 30% to the transmission of the virus, respectively.

Identification of a New Potyvirus, Keunjorong mosaic virus in Cynanchum wilfordii and C. auriculatum (큰조롱과 넓은잎 큰조롱에서 신종 포티바이러스(큰조롱모자이크바이러스)의 동정)

  • Lee, Joo-Hee;Park, Seok-Jin;Nam, Moon;Kim, Min-Ja;Lee, Jae-Bong;Sohn, Hyoung-Rac;Choi, Hong-Soo;Kim, Jeong-Soo;Lee, Jun-Seong;Moon, Jae-Sun;Lee, Su-Heon
    • Research in Plant Disease
    • /
    • v.16 no.3
    • /
    • pp.238-246
    • /
    • 2010
  • In 2006 fall, a preliminary survey of viruses in two important medicinal plants, Cynanchum wilfordii and C. auriculatum, was conducted on the experimental fields at the Agricultural Research and Extension Services of Chungbuk province in Korea. On each experimental fields, percentage of virus infection was ranged from 20 to 80%, and especially an average of disease incidence propagated by roots was twice higher than that by seeds. The various symptoms were observed in Cynanchum spp. plants, such as mosaic, mottle, necrosis, yellowing, chlorotic spot and malformation etc. In electron microscopic examination of crude sap extracts, filamentous rod particles with 390-730 nm were observed in most samples. The virus particles were purified from the leaves of C. wilfordii with typical mosaic symptom, and the viral RNA was extracted from this sample containing 430-845 nm long filamentous rod. To identify the viruses, reverse transcription followed by PCR with random primers was carried out. The putative sequences of P3 and coat protein of potyvirus were obtained. From a BLAST of the two sequences, they showed 26-38% and 62-72% identities to potyviruses, respectively. In SDS-PAGE analysis, the subunit of coat protein was approximately 30.3 kDa, close to the coat protein of potyvirus. In bioassay with 21 species in 7 families, Chenopodium quinoa showed local lesion on inoculated leave and chlorotic spot on upper leave, but the others were not infected. RT-PCR detection using specific primer of C. wilfordii and C. auriculatum samples, all of 24 samples with virus symptom was positive, and five out of seven samples without virus symptom were also positive. On the basis of these data, the virus could be considered as a new member of potyvirus. We suggested that the name of the virus was Keunjorong mosaic virus (KjMV) after the common Korean name of C. wilfordii.

Low Temperature Inducible Acid Tolerance Response in virulent Salmonella enterica serovar Typhimurium (병원성 Salmonella enterica serovar Typhimurium의 저온 유도성 산 내성 반응)

  • Song, Sang-Sun;Lee, Sun;Lee, Mi-Kyoung;Lim, Sung-Young;Cho, Min-Ho;Park, Young-Keun;Park, Kyeong-Ryang;Lee, In-Soo
    • Korean Journal of Microbiology
    • /
    • v.37 no.3
    • /
    • pp.228-233
    • /
    • 2001
  • The acid tolerance response (ATR) of log-phase Salmouella enterica seroyar Typhimurium is induced by acid adaptation below pH4.5 and will protect cells against more severe acid. Two distinctive ATR systems in thisorganism are a log-phase and stationary-phase ATR in which acid adaptations trigger the synthesis of acid shockproteins (ASPs). We found that log-phase ATR system was strongly affected by environmental factor, low tem-perature, $25^{\circ}C$. Exposure to low temperature and mild acid has been shown to increase acid survival dra-matically, and this survival rate was showed higher than $37^{\circ}C$. Especially unadapted cells at $25^{\circ}C$ presented tenthousand folds survival increasing when compared with cells at $37^{\circ}C$. The degree of acid tolerance of rpoSwhich is blown to be required for acid tolerance more increase than $37^{\circ}C$. Even though AIR pattern of rpoSbetween unadapted and adapted was showed similar at pH 3.1, rpoS-dependent ATR system also has beendetected in low temperature because rpoSAp prevents sustained acid survival at $25^{\circ}C$. Therefore the resultssuggest low temperature ATR system requires rpoS-dependent and -independent both. To investigate the basisfor low temperature related ATR system, gene that was participated for low temperature acid tolerance (lat) wasscreened in virulent S. enterica serovar Typhimurium UKl Using the technique of P22- MudJ (Km, lacZ)-directed lacZ operon fusion, LF452 latA‥‥MudJ was isolated. The latA‥‥MudJ of S. enterica Typhimurium pre-vented low temperature acid tolerance response. Therefore latA is considered one of the important genes for acidadaptation.

  • PDF

Comparison of Characteristics on Electrolyzed Water Manufactured by Various Electrolytic Factors (전해인자에 따른 전기분해수의 특성 비교)

  • Kim, Myung-Ho;Jeong, Jin-Woong;Cho, Young-Je
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.3
    • /
    • pp.416-422
    • /
    • 2004
  • Efficacy of surface sterilization and physicochemical properties of electrolyzed water manufactured depending on electrolyte, materials, and type of electrolytic diaphragm used were investigated. Physical properties of electrolyzed water manufactured from diaphragm system showed the highest effectiveness under at distance between diaphragms of 1.0 mm and 20% NaCl supplying rate of 6 mL/min. ORP, HClO (should defined) content, and pH at above conditions were 1,170 mV, 100 ppm, and 2.5, respectively. Two-stage electrolyzed system was more effective than one-stage one. Electrolyzed water manufactured from non-diaphragm system at 4 mL/min supplying rate of 20% NaCl was similar to the most effective diaphragm system, whereas ORP, HClO content, and pH were 800 mV, 200 ppm, and 9, respectively. Sealed electrolyzed water could be preserved more than one month at room temperature with ORPs of 750 and 1,150 mV in non-diaphragm and diaphragm systems, respectively, and at HClO content of 100 ppm. Physicochemical properties of electrolyzed water manufactured from electrolytic diaphragm of $IrO_{2}$ and Pt+Ir were more effective than that of Pt. ORP and HClO contents of electrolyzed water manufactured from various electrolytes were high in order of NaCl>KCl>$CaCl_{2}$, whereas no differences were observed among electrolytes in sterilization efficacy. Twelve kinds of microorganisms tested (initial total count, $10^{5}-10^{6}CFU/mL$) were sterilized within 1-2 min by electrolyzed water.

유청단백질로 만들어진 식품포장재에 관한 연구

  • Kim, Seong-Ju
    • 한국유가공학회:학술대회논문집
    • /
    • 2002.04a
    • /
    • pp.59-60
    • /
    • 2002
  • Edible films such as wax coatings, sugar and chocolate covers, and sausage casings, have been used in food applications for years$^{(1)}$ However, interest in edible films and biodegradable polymers has been renewed due to concerns about the environment, a need to reduce the quantity of disposable packaging, and demand by the consumer for higher quality food products. Edible films can function as secondary packaging materials to enhance food quality and reduce the amount of traditional packaging needed. For example, edible films can serve to enhance food quality by acting as moisture and gas barriers, thus, providing protection to a food product after the primary packaging is opened. Edible films are not meant to replace synthetic packaging materials; instead, they provide the potential as food packagings where traditional synthetic or biodegradable plastics cannot function. For instance, edible films can be used as convenient soluble pouches containing single-servings for products such as instant noodles and soup/seasoning combination. In the food industry, they can be used as ingredient delivery systems for delivering pre-measured ingredients during processing. Edible films also can provide the food processors with a variety of new opportunities for product development and processing. Depends on materials of edible films, they also can be sources of nutritional supplements. Especially, whey proteins have excellent amino acid balance while some edible films resources lack adequate amount of certain amino acids, for example, soy protein is low in methionine and wheat flour is low in lysine$^{(2)}$. Whey proteins have a surplus of the essential amino acid lysine, threonine, methionine and isoleucine. Thus, the idea of using whey protein-based films to individually pack cereal products, which often deficient in these amino acids, become very attractive$^{(3)}$. Whey is a by-product of cheese manufacturing and much of annual production is not utilized$^{(4)}$. Development of edible films from whey protein is one of the ways to recover whey from dairy industry waste. Whey proteins as raw materials of film production can be obtained at inexpensive cost. I hypothesize that it is possible to make whey protein-based edible films with improved moisture barrier properties without significantly altering other properties by producing whey protein/lipid emulsion films and these films will be suitable far food applications. The fellowing are the specific otjectives of this research: 1. Develop whey protein/lipid emulsion edible films and determine their microstructures, barrier (moisture and oxygen) and mechanical (tensile strength and elongation) properties. 2. Study the nature of interactions involved in the formation and stability of the films. 3. Investigate thermal properties, heat sealability, and sealing properties of the films. 4. Demonstrate suitability of their application in foods as packaging materials. Methodologies were developed to produce edible films from whey protein isolate (WPI) and concentrate (WPC), and film-forming procedure was optimized. Lipids, butter fat (BF) and candelilla wax (CW), were added into film-forming solutions to produce whey protein/lipid emulsion edible films. Significant reduction in water vapor and oxygen permeabilities of the films could be achieved upon addition of BF and CW. Mechanical properties were also influenced by the lipid type. Microstructures of the films accounted for the differences in their barrier and mechanical properties. Studies with bond-dissociating agents indicated that disulfide and hydrogen bonds, cooperatively, were the primary forces involved in the formation and stability of whey protein/lipid emulsion films. Contribution of hydrophobic interactions was secondary. Thermal properties of the films were studied using differential scanning calorimetry, and the results were used to optimize heat-sealing conditions for the films. Electron spectroscopy for chemical analysis (ESCA) was used to study the nature of the interfacial interaction of sealed films. All films were heat sealable and showed good seal strengths while the plasticizer type influenced optimum heat-sealing temperatures of the films, 130$^{\circ}$C for sorbitol-plasticized WPI films and 110$^{\circ}$C for glycerol-plasticized WPI films. ESCA spectra showed that the main interactions responsible for the heat-sealed joint of whey protein-based edible films were hydrogen bonds and covalent bonds involving C-0-H and N-C components. Finally, solubility in water, moisture contents, moisture sorption isotherms and sensory attributes (using a trained sensory panel) of the films were determined. Solubility was influenced primarily by the plasticizer in the films, and the higher the plasticizer content, the greater was the solubility of the films in water. Moisture contents of the films showed a strong relationship with moisture sorption isotherm properties of the films. Lower moisture content of the films resulted in lower equilibrium moisture contents at all aw levels. Sensory evaluation of the films revealed that no distinctive odor existed in WPI films. All films tested showed slight sweetness and adhesiveness. Films with lipids were scored as being opaque while films without lipids were scored to be clear. Whey protein/lipid emulsion edible films may be suitable for packaging of powder mix and should be suitable for packaging of non-hygroscopic foods$^{(5,6,7,8,)}$.

  • PDF

A Proposal for Promotion of Research Activities by Analysis of KOSEF's Basic Research Supports in Agricultural Sciences (한국과학재단의 농수산분야 기초연구지원 추이분석을 통한 연구활동지원 활성화 제언)

  • Min, Tae-Sun;Choi, Hyung-Kyoon;Kim, Seong-Yong;Bai, Sung-Chul;Kim, Yoo-Yong;Yang, Moon-Sik;Chung, Bong-Hyun;Hwang, Joon-Young;Han, In-Kyu
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.23-33
    • /
    • 2005
  • Agricultural sciences field in South Korea has many strong points such as numerous researchers, establishment of research infra-structure, excellence in research competitiveness and high technological level. However, there are also many weaknesses including insufficient leadership at related societies and institutes, deficiency of the next generation research group, and insufficiency in research productivity. There are many opportunities including increasing the importance of the biotechnological industry, activating international cooperation researches, and exploring the multitude of possible research areas to be studied. However, some threats still exist, such as pressure from the government of developed countries to open the agricultural market, the decrease of specialized farms, and intensification for researches to gratify economic and social demands. To encourage research activities in the agricultural sciences field in Korea, the following actions and systems are required: 1) formulation of a mid- and a long-term research master plan, 2) development of a database on the man power in related fields, 3) activation of top-down research topics, and associated increase of individual research grants, 4) development of special national programs for basic researches in agricultural sciences, 5) organization of a committee for policy and planning within the related societies, and 6) system development for the fair evaluation of the research results.

Pathogen, Insect and Weed Control Effects of Secondary Metabolites from Plants (식물유래 2차 대사물질의 병충해 및 잡초 방제효과)

  • Kim, Jong-Bum
    • Applied Biological Chemistry
    • /
    • v.48 no.1
    • /
    • pp.1-15
    • /
    • 2005
  • Pathogens, insects and weeds have significantly reduced agricultural productivity. Thus, to increase the productivity, synthetic agricultural chemicals have been overused. However, these synthetic compounds that are different from natural products cannot be broken down easily in natural systems, causing the destruction of soil quality and agricultural environments and the gradually difficulty in continuous agriculture. Now agriculture is faced with the various problems of minimizing the damage in agricultural environments, securing the safety of human health, while simultaneously increasing agricultural productivity. Meanwhile, plants produce secondary metabolites to protect themselves from external invaders and to secure their region for survival. Plants infected with pathogens produce antibiotics phytoalexin; monocotyledonous plants produce flavonoids and diterpenoids phytoalexins, and dicotylodoneous plant, despite of infected pathogens, produce family-specific phytoalexin such as flavonoids in Leguminosae, indole derivatives in Cruciferae, sesquitepenoids in Solanaceae, coumarins in Umbelliferae, making the plant resistant to specific pathogen. Growth inhibitor or antifeedant substances to insects are terpenoids pyrethrin, azadirachtin, limonin, cedrelanoid, toosendanin and fraxinellone/dictamnine, and terpenoid-alkaloid mixed compounds sesquiterpene pyridine and norditerpenoids, and azepine-, amide-, loline-, stemofoline-, pyrrolizidine-alkaloids and so on. Also plants produces the substances to inhibit other plant growths to secure the regions for plant itself, which is including terpenoids essential oil and sesquiterpene lactone, and additionally, benzoxazinoids, glucosinolate, quassinoid, cyanogenic glycoside, saponin, sorgolennone, juglone and lots of other different of secondary metabolites. Hence, phytoalexin, an antibiotic compound produced by plants infected with pathogens, can be employed for pathogen control. Terpenoids and alkaloids inhibiting insect growth can be utilized for insect control. Allelochemicals, a compound released from a certain plant to hinder the growth of other plants for their survival, can be also used directly as a herbicides for weed control as well. Therefore, the use of the natural secondary metabolites for pest control might be one of the alternatives for environmentally friendly agriculture. However, the natural substances are destroyed easily causing low the pest-control efficacy, and also there is the limitation to producing the substances using plant cell. In the future, effects should be made to try to find the secondary metabolites with good pest-control effect and no harmful to human health. Also the biosynthetic pathways of secondary metabolites have to be elucidated continuously, and the metabolic engineering should be applied to improve transgenics having the resistance to specific pest.

The Effect of Simple Freezing Method on Viability of Frozen-thawed Primordial Germ Cells on the Chicken (간이 동결 방법이 닭 원시 생식 세포의 생존율에 미치는 영향)

  • Kim, Hyun;Cho, Young Moo;Han, Jae Yong;Choi, Sung Bok;Cho, Chang-Yeon;Suh, Sangwon;Ko, Yeoung-Gyu;Seong, Hwan-Hoo;Kim, Sung Woo
    • Korean Journal of Poultry Science
    • /
    • v.41 no.4
    • /
    • pp.261-270
    • /
    • 2014
  • This study was conducted to establish the method for preserving chicken primordial germ cells (PGCs) that enables long-term storage in liquid nitrogen ($LN_2$) for developmental engineering or preservation of species. The purpose of this study is to clarify the effects of simple freeze-thaw treatment on viability of PGCs in chickens and to the optimal protocol for PGCs freezing. PGCs obtained from the germinal gonade of an early embryos of 5.5~6 day (stage 28) of Isa Brown, Korean Ogye (KO), White Leghorn and Commercial breeds, using the MACS method were suspended in a freezing medium containing a freezing and protecting agents (e.g. dimethyl sulfoxide (DMSO), ethylene glycol (EG) and propylene glycol (PG)). The gonadal cells, including PGCs, were then frozen in 1 of the following cryoprotectant treatments : 2.5%, 5%, 10%, 15%, and 0% cryoprotectant (DMSO, EG, PG) as a control. Effects of exposure to simple freezing, with different concentrations of the cryoprotectant solution, were examined. After simple freezing, the viability of PGCs after freeze-thawing was significantly higher for Commercial breeds ($88.7{\pm}2.4%$) than KO ($85.1{\pm}0.4%$), Isa Brown ($84.6{\pm}0.2%$) and White Leghorn ($85.9{\pm}0.1%$) (p<0.05) using 10% EG cryoprotectant. Therefore, these systems may contribute in the improvement of cryopreservation for a scarce species in birds preservation. This study established a method for preserving chicken PGCs that enables systematic storage and labeling of cryopreserved PGCs in liquid ($LN_2$) at a germplasm repository and ease of entry into a database.