• Title/Summary/Keyword: Systemic resistance

Search Result 296, Processing Time 0.032 seconds

Galactinol is Involved in Induced Systemic Resistance against Bacterial Infection and Environmental Stresses

  • Cho, Song-Mi;Kim, Su-Hyun;Kim, Young-Cheol;Yang, Kwang-Yeol;Kim, Kwang-Sang;Choi, Yong-Soo;Cho, Baik-Ho
    • Korean Journal of Plant Resources
    • /
    • v.23 no.3
    • /
    • pp.248-255
    • /
    • 2010
  • We previously demonstrated that root colonization of the rhizobacterium, Pseudomonas chlororaphis O6, induced expression of a galactinol synthase gene (CsGolS1), and resulting galactinol conferred induced systemic resistance (ISR) against fungal and bacterial pathogens in cucumber leaves. To examine the role of galactinol on ISR, drought or high salt stress, we obtained T-DNA insertion Arabidopsis mutants at the AtGolS1 gene, an ortholog of the CsGolS1 gene. The T-DNA insertion mutant compromised resistance induced by the O6 colonization against Erwinia carotovora. Pharmaceutical application of 0.5 - 5 mM galactinol on roots was sufficient to elicit ISR in wild-type Arabidopsis against infection with E. carotovora. The involvement of jasmonic acid (JA) signaling on the ISR was validated to detect increased expression of the indicator gene PDF1.2. The T-DNA insertion mutant also compromised tolerance by increasing galactinol content in the O6-colonized plant against drought or high salt stresses. Taken together, our results indicate that primed expression of the galactinol synthase gene AtGolS1in the O6-colonized plants can play a critical role in the ISR against infection with E. carotovora, and in the tolerance to drought or high salt stresses.

Investigating the Induced Systemic Resistance Mechanism of 2,4-Diacetylphloroglucinol (DAPG) using DAPG Hydrolase-Transgenic Arabidopsis

  • Chae, Dae-Han;Kim, Da-Ran;Cheong, Mi Sun;Lee, Yong Bok;Kwak, Youn-Sig
    • The Plant Pathology Journal
    • /
    • v.36 no.3
    • /
    • pp.255-266
    • /
    • 2020
  • Plant immune responses can be triggered by chemicals, microbes, pathogens, insects, or abiotic stresses. In particular, induced systemic resistance (ISR) refers to the activation of the immune system due to a plant's interaction with beneficial microorganisms. The phenolic compound, 2,4-diacetylphloroglucinol (DAPG), which is produced by beneficial Pseudomonas spp., acts as an ISR elicitor, yet DAPG's mechanism in ISR remains unclear. In this study, transgenic Arabidopsis thaliana plants overexpressing the DAPG hydrolase gene (phlG) were generated to investigate the functioning of DAPG in ISR. DAPG was applied onto 3-week-old A. thaliana Col-0 and these primed plants showed resistance to the pathogens Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. However, in the phlG transgenic A. thaliana, the ISR was not triggered against these pathogens. The DAPG-mediated ISR phenotype was impaired in transgenic A. thaliana plants overexpressing phlG, thus showing similar disease severity when compared to untreated control plants. Furthermore, the DAPG-treated A. thaliana Col-0 showed an increase in their gene expression levels of PDF1.2 and WRKY70 but this failed to occur in the phlG transgenic lines. Collectively, these experimental results indicate that jasmonic acid/ethylene signal-based defense system is effectively disabled in phlG transgenic A. thaliana lines.

Treatment of Systemic Inflammatory Response Syndrome (SIRS) Following Open Heart Surgery Developed into Shock - A case report- (쇼크로 이행한 체외순환 후의 전신성 염증반응 증후군 치험 -1예 보고-)

  • 이동석;신윤철;김응중;지현근
    • Journal of Chest Surgery
    • /
    • v.37 no.11
    • /
    • pp.922-924
    • /
    • 2004
  • A 55 year old male was admitted for dyspnea. The patient was diagnosed as acute myocardiac infarction, and coronary artery bypass grafting was performed with cardiopulmonary bypass. At postoperative day #1, Systemic Inflammatory Response Syndrome was developed with fever, leukocytosis, tachycardia, tachypnea and low systemic vascular resistance. The patient was recovered after being treated with high dose of (36 $\mug/min)$ norepinephrine, and was discharged.

Bacterial determinants involved in the induction of systemic resistance ana plant growth promotion in tobacco by Pseudomonas chlororaphis O6.

  • Han, Song-Hee;Cho, Baik-Ho;Kim, Young-Cheol
    • Proceedings of the Korean Society of Plant Pathology Conference
    • /
    • 2003.10a
    • /
    • pp.101.2-102
    • /
    • 2003
  • The ability of P. chlororaphis O6 to induce resistance to Erwinia carotovora subsp. carotovara SCCI and to promote growth in tobacco was demonstrated in microtiter assays on plants pre-inoculated at the root level with the bacteria before challenge with the leaf pathogen. To identify th bacterial determinants involved in induced systemic resistance and plant growth promotion, cell culture of O6 grown in King's medium B was fractionated with organic solvents and purified using various columns. in vivo and in vitro assays with samples from successive fractionation steps of the O6 supernatant led to the conclusion that antibacterial compounds were observed in aqueous layer, and to the isolation of fractions containing metabolites that retained most of the resistance-inducing activity (70:30, methanol:water) and the plant growth promotion (80:20 and 90:10, methanol:water) after ODS column chromatography. Although these molecules remain to be purified further and structurally characterized, its isolation is an addition to the range of determinants from plant growth-promoting rhizobacteria known to stimulate plant defence.

  • PDF

The Effects of Wood Vinegar on Growth and Resistance of Peppers (목초액이 고추의 생장 및 내병성에 미치는 영향)

  • Jeong, Ji-Hyun;Jeong, Da-Eun;Lee, Su-Jin;Seul, Keyung-Jo;Ryul, Choong-Min;Park, Seung-Hwan;Ghim, Sa-Youl
    • Microbiology and Biotechnology Letters
    • /
    • v.35 no.1
    • /
    • pp.41-44
    • /
    • 2007
  • This study was carried out to investigate the effects of wood vinegar on growth and resistance of peppers. It was observed that heights and dried weights of the peppers treated with diluted wood vinegar were increased, especially 1:500 diluted wood vinegar was the most effective. The Wood vinegar also showed antibacterial activity against Xanthomonas axonopodis pv. vesicatoria directly. The growth of X. axonopodis pv. vesicatoria was completely inhibited when incubated for 12 hours at $30^{\circ}C$ with non diluted wood vinegar. The peppers applied wood vinegar did not show induced systemic resistance after injecting X. axonopodis pv. vesicatoria.

Effects of Arugula Vermicompost on the Root-Knot Nematode (Meloidogyne javanica) and the Promotion of Resistance Genes in Tomato Plants

  • Rostami, Mahsa;Karegar, Akbar;Ghorbani, Abozar
    • The Plant Pathology Journal
    • /
    • v.38 no.4
    • /
    • pp.261-271
    • /
    • 2022
  • Root-knot nematodes are the most important plant-parasitic nematodes worldwide. Many efforts have been made to find non-chemical, risk-free, and environmentally friendly methods for nematode control. In this study, the effects of compost and vermicompost of arugula (Eruca sativa) on Meloidogyne javanica were investigated in three glasshouse experiments. In addition, the expression of the defense-related genes nonexpressor of pathogenesis-related 1 (NPR1) and lipoxygenase 1 (LOX1) was detected in tomato plants treated with vermicompost of arugula at 0, 2, 7, and 14 days after nematode inoculation. The result showed that the vermicompost of arugula significantly reduced the reproduction factor of the nematode by 54.4% to 70.5% in the three experiments and increased the dry weight of shoots of infected tomato plants. Gene expression analysis showed that LOX1 expression increased on the second and seventh day after nematode inoculation, while NPR1 expression decreased. The vermicompost of arugula showed stronger nematode inhibitory potential than the vermicompost of animal manure. The vermicompost of arugula is superior to arugula compost in suppressing the activity of M. javaniva and reducing its impact. It manipulates the expression of resistance genes and could induce systemic resistance against root-knot nematodes.

Simulation of Cardiovascular System for an Optimal Sodium Profiling in Hemodialysis

  • Lim, K.M.;Min, B.G.;Shim, E.B.
    • International Journal of Vascular Biomedical Engineering
    • /
    • v.2 no.2
    • /
    • pp.16-26
    • /
    • 2004
  • The object of this study is to develop a mathematical model of the hemodialysis system including the mechanism of solute kinetics, water exchange and also cardiovascular dynamics. The cardiovascular system model used in this study simulates the short-term transient and steady-state hemodynamic responses such as hypotension and disequilibrium syndrome (which are main complications to hemodialysis patients) during hemodialysis. It consists of a 12 lumped-parameter representation of the cardiovascular circulation connected to set-point models of the arterial baroreflexes, a kinetic model (hemodialysis system model) with 3 compartmental body fluids and 2 compartmental solutes. We formulate mathematically this model in terms of an electric analog model. All resistors and most capacitors are assumed to be linear. The control mechanisms are mediated by the information detected from arterial pressoreceptors, and they work on systemic arterial resistance, heart rate, and systemic venous unstressed volume. The hemodialysis model includes the dynamics of urea, creatinine, sodium and potassium in the intracellular and extracellular pools as well as fluid balance equations for the intracellular, interstitial, and plasma volumes. Model parameters are largely based on literature values. We have presented the results on the simulations performed by changing some model parameters with respect to their basal values. In each case, the percentage changes of each compartmental pressure, heart rate (HR), total systemic resistance (TSR), ventricular compliance, zero pressure filling volume and solute concentration profiles are represented during hemodialysis.

  • PDF

Suppression of UDP-glycosyltransferase-coding Arabidopsis thaliana UGT74E2 Gene Expression Leads to Increased Resistance to Psuedomonas syringae pv. tomato DC3000 Infection

  • Park, Hyo-Jun;Kwon, Chang-Seob;Woo, Joo-Yong;Lee, Gil-Je;Kim, Young-Jin;Paek, Kyung-Hee
    • The Plant Pathology Journal
    • /
    • v.27 no.2
    • /
    • pp.170-182
    • /
    • 2011
  • Plants possess multiple resistance mechanisms that protect themselves against pathogen attack. To identify unknown components of the defense machinery in Arabidopsis, gene-expression changes were monitored in Arabidopsis thaliana under 18 different biotic or abiotic conditions using a DNA microarray representing approximately 25% of all Arabidopsis thaliana genes (www.genevestigator.com). Seventeen genes which are early responsive to salicylic acid (SA) treatment as well as pathogen infection were selected and their T-DNA insertion mutants were obtained from SALK institute. To elucidate the role of each gene in defense response, bacterial pathogen Pseudomonas syringae pv. tomato (Pst) DC3000 was inoculated onto individual T-DNA insertion mutants. Four mutants exhibited decreased resistance and five mutants displayed significantly enhanced resistance against Pst DC3000-infection as measured by change in symptom development as compared to wild-type plants. Among them, member of uridin diphosphate (UDP)-glycosyltransferase (UGT) was of particular interest, since a UGT mutant (At1g05680) showed enhanced resistance to Pst-infection in Arabidopsis. In systemic acquired resistance (SAR) assay, this mutant showed enhanced activation of SAR. Also, the enhanced SAR correlated with increased expression of defense-related gene, AtPR1. These results emphasize that the glycosylation of UGT74E2 is a part of the SA-mediated disease-resistance mechanism.

Studies on the Resistance to Antibiotics (세균의 약제 감수성에 관한 연구 II)

  • 정규선
    • YAKHAK HOEJI
    • /
    • v.30 no.2
    • /
    • pp.55-61
    • /
    • 1986
  • A total of 130 of Staphylococcus strains isolated from various clinical specimens of admitted patients of a university hospital with systemic or severe cases of infection. All of these were tested for the antimicrobial susceptibility to 11 drugs of common use. The hospital strains isolated showed higher frequency of resistance against four drugs including gentamicin, penicillin, erythromycin, kanamycin but amikacin, cephalothin, streptomycin were effective. And also 47.7% of methicillin-resistant Staphylococcus were isolated from the clinical patients. However, isolated Escherichia coli strains showed higher frequency of resistance, but two drugs, tobramycin and gentamicin were effective to them.

  • PDF

Bacillus vallismortis EXTN-1-Mediated Growth Promotion and Disease Suppression in Rice

  • Park Kyung-Seok;Paul Diby;Yeh Wan-Hae
    • The Plant Pathology Journal
    • /
    • v.22 no.3
    • /
    • pp.278-282
    • /
    • 2006
  • Bacillus vallismortis EXTN-1, a biocontrol agent in cucumber, tomato and potato was tested in rice pathosystem against rice fungal pathogens viz. Magnaporthe grisea, Rhizoctonia solani and Cochliobolus miyabeanus. Apart from increasing the yield in the bacterized plants (11.6-12.6% over control), the study showed that EXTN1 is effective in bringing about disease suppression against all the tested fungal pathogens. EXTN-l treatment resulted in 52.11% reduction in rice blast, 83.02% reduction in sheath blight and 11.54% decrease in brown spot symptoms. As the strain is proven as an inducer for systemic resistance based on PR gene expression in Arabidopsis and tobacco models, it is supposed that a similar mechanism works in rice, bringing about disease suppression. The strain could be used as a potent biocontrol and growth-promoting agent in rice cropping system.