References
- Beckers, G. J. and Conrath, U. 2007. Priming for stress resistance: from the lab to the field. Curr. Opin. Plant Biol. 10:425-431. https://doi.org/10.1016/j.pbi.2007.06.002
- Boller, T. and Felix, G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379-406. https://doi.org/10.1146/annurev.arplant.57.032905.105346
- Bottiglieri, M. and Keel, C. 2006. Characterization of phlG, a hydrolase that specifically degrades the antifungal compound 2,4-diacetylphloroglucinol in the biocontrol agent Pseudomonas flourescens CHA0. Appl. Environ. Microbiol. 72:418-427. https://doi.org/10.1128/AEM.72.1.418-427.2006
- Brazelton, J. N., Pfeufer, E. E., Sweat, T. A., Gardener, B. B. M. and Coenen, C. 2008. 2,4-diacetylphloroglucinol alters plant root development. Mol. Plant-Microbe Interact. 21:1349-1358. https://doi.org/10.1094/MPMI-21-10-1349
- Cao, H., Glazebrook, J., Clarke, J. D., Volko, S. and Dong, X. 1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57-63. https://doi.org/10.1016/S0092-8674(00)81858-9
- Clough, S. J. and Bent, A. F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16:735-743. https://doi.org/10.1046/j.1365-313x.1998.00343.x
- Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K. and Scheible, W.-R. 2005. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 139:5-17. https://doi.org/10.1104/pp.105.063743
- Dempsey, D. A. and Klessig, D. F. 2012. SOS - too many signals for systemic acquired resistance? Trends Plant Sci. 17:538-545. https://doi.org/10.1016/j.tplants.2012.05.011
- Edwards, K., Johnstone, C. and Thompson, C. 1991. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 19:1349. https://doi.org/10.1093/nar/19.6.1349
- Engelberth, J., Alborn, H. T., Schmelz, E. A. and Tumlinson, J. H. 2004. Airborne signals prime plants against insect herbivore attack. Proc. Natl. Acad. Sci. U. S. A. 101:1781-1785. https://doi.org/10.1073/pnas.0308037100
- Fernandez-Bautista, N., Dominguez-Nunez, J. A., Moreno, M. M. C. and Berrocal-Lobo, M. 2016. Plant tissue trypan blue staining during phytopathogen infection. Bio-Protocol 6:e2078.
- Haas, D. and Keel, C. 2003. Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu. Rev. Phytopathol. 41:117-153. https://doi.org/10.1146/annurev.phyto.41.052002.095656
- Iavicoli, A., Boutet, E., Buchala, A. and Metraux, J.-P. 2003. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol. Plant-Microbe Interact. 16:851-858. https://doi.org/10.1094/MPMI.2003.16.10.851
- Jiang, C.-H., Fan, Z.-H., Xie, P. and Guo, J.-H. 2016. Bacillus cereus AR156 Extracellular Polysaccharides Served as a Novel Micro-associated Molecular Pattern to Induced Systemic Immunity to Pst DC3000 in Arabidopsis. Front. Microbiol. 7:664.
- Jiang, C.-H., Huang, Z.-Y., Xie, P., Gu, C., Li, K., Wang, D.-C., Yu, Y.-Y., Fan, Z.-H., Wang, C.-J., Wang, Y.-P., Guo, Y.-H. and Guo, J.-H. 2016. Transcription factors WRKY70 and WRKY11 served as regulators in rhizobacterium Bacillus cereus AR156-induced systemic resistance to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis. J. Exp. Bot. 67:157-174. https://doi.org/10.1093/jxb/erv445
- Journot-Catalino, N., Somssich, I. E., Roby, D. and Kroj, T. 2006. The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell 18:3289-3302. https://doi.org/10.1105/tpc.106.044149
- Keel, C., Schnider, U., Maurhofer, M., Voisard, C., Laville, J., Burger, U. Wirthner, P., Hass, D. and Defago, G. 1992. Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol. Plant-Microbe Interact. 5:4-13. https://doi.org/10.1094/MPMI-5-004
- Keogh, R. C., Deverall, B. J. and McLeod, S. 1980. Comparison of histological and physiological responses to Phakopsora pachyrhizi in resistant and susceptible soybean. Trans. Br. Mycol. Soc. 74:329-333. https://doi.org/10.1016/s0007-1536(80)80163-x
- Koo, Y. M., Heo, A. Y. and Choi, H. W. 2020. Salicylic acid as a safe plant protector and growth regulator. Plant Pathol. J. 36:1-10. https://doi.org/10.5423/PPJ.RW.12.2019.0295
- Kwak, Y.-S. and Weller, D. M. 2013. Take-all of wheat and natural disease suppression: a review. Plant Pathol. J. 29:125-135. https://doi.org/10.5423/PPJ.SI.07.2012.0112
- Li, J., Brader, G. and Palva, E. T. 2004. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319-331. https://doi.org/10.1105/tpc.016980
- Lievens, L., Pollier, J., Goossens, A., Beyaert, R. and Staal, J. 2017. Abscisic acid as pathogen effector and immune regulator. Front. Plant Sci. 8:587.
- Nie, P., Li, X., Wang, S., Guo, J., Zhao, H. and Niu, D. 2017. Induced systemic resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-dependent signaling pathway and activates PAMP-triggered immunity in Arabidopsis. Front. Plant Sci. 8:238.
- Pfaffl, M. W. 2004. Quantification strategies in real-time PCR. In: A-Z of quantitative PCR, ed. by S. A. Bustin, pp. 87-112. International University Line, La Jolla, CA, USA.
- Peng, Z. Y., Zhou, X., Li, L., Yu, X., Li, H., Jiang, Z., Cao, G., Bai, M., Wang, X., Jiang, C., Lu, H., Hou, X., Qu, L., Wang, Z., Zuo, J., Fu, X., Su, Z., Li, S. and Guo, H. 2009. Arabidopsis Hormone Database: a comprehensive genetic and phenotypic information database for plant hormone research in Arabidopsis. Nucleic Acids Res. 37 Suppl 1:D975-D982. https://doi.org/10.1093/nar/gkn873
- Pieterse, C. M., van Wees, S. C., van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J., and van Loon, L. C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571-1580. https://doi.org/10.2307/3870620
- Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. M. and Bakker, P. A. H. M. 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52:347-375. https://doi.org/10.1146/annurev-phyto-082712-102340
- Raaijmakers, J. M. and Weller, D. M. 2001. Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1-96. Appl. Environ. Microbiol. 67:2545-2554. https://doi.org/10.1128/AEM.67.6.2545-2554.2001
- Seif El-Yazal, S. A., Seif El-Yazal, M. A., Dwidar, E. F. and Rady, M. M. 2015. Phytohormone crosstalk research: cytokinin and its crosstalk with other phytohormones. Curr. Protein Pept. Sci. 16:395-405. https://doi.org/10.2174/1389203716666150330141159
- Siddiqui, Z. A., Baghel, G. and Akhtar, M. S. 2007. Biocontrol of Meloidogyne javanica by Rhizobium and plant growthpromoting rhizobacteria on lentil. World J. Microbiol. Biotechnol. 23:435-441. https://doi.org/10.1007/s11274-006-9244-z
- Stepanova, A. N., Hoyt, J. M., Hamilton, A. A. and Alonso, J. M. 2005. A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17:2230-2242. https://doi.org/10.1105/tpc.105.033365
- Wang, C., Gao, F., Wu, J., Dai, J., Wei, C. and Li, Y. 2010. Arabidopsis putative deacetylase AtSRT2 regulates basal defense by suppressing PAD4, EDS5 and SID2 expression. Plant Cell Physiol. 51:1291-1299. https://doi.org/10.1093/pcp/pcq087
- van Wees, S. C. M., Luijendijk, M., Smoorenburg, I., van Loon, L. C. and Pieterse, C. M. J. 1999. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defenserelated genes but stimulates the expression of the jasmonateinducible gene Atvsp upon challenge. Plant Mol. Biol. 41:537-549. https://doi.org/10.1023/A:1006319216982
- Weller, D. M., Landa, B. B., Mavrodi, O. V., Schroeder, K. L., De La Fuente, L., Blouin Bankhead, S., Allende Molar, R., Bonsall, R. F., Mavrodi, D. V. and Thomashow, L. S. 2007. Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biol. 9:4-20. https://doi.org/10.1055/s-2006-924473
- Weller, D. M., Mavrodi, D. V., van Pelt, J. A., Pieterse, C. M. J., van Loon, L. C. and Bakker, P. A. H. M. 2012. Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 102:403-412. https://doi.org/10.1094/PHYTO-08-11-0222
- Yoo, S.-J. and Sang, M. K. 2017. Induced systemic tolerance to muliple stresses including biotic and abiotic factors by rhizobaceria. Res. Plant Dis. 23:99-113 (in Korean). https://doi.org/10.5423/RPD.2017.23.2.99