Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.02.2020.0031

Investigating the Induced Systemic Resistance Mechanism of 2,4-Diacetylphloroglucinol (DAPG) using DAPG Hydrolase-Transgenic Arabidopsis  

Chae, Dae-Han (Division of Applied Life Science (BK21Plus) and Institute of Agriculture & Life Science, Gyeongsang National University)
Kim, Da-Ran (Department of Plant Medicine, Gyeongsang National University)
Cheong, Mi Sun (Division of Applied Life Science (BK21Plus) and Institute of Agriculture & Life Science, Gyeongsang National University)
Lee, Yong Bok (Division of Applied Life Science (BK21Plus) and Institute of Agriculture & Life Science, Gyeongsang National University)
Kwak, Youn-Sig (Division of Applied Life Science (BK21Plus) and Institute of Agriculture & Life Science, Gyeongsang National University)
Publication Information
The Plant Pathology Journal / v.36, no.3, 2020 , pp. 255-266 More about this Journal
Abstract
Plant immune responses can be triggered by chemicals, microbes, pathogens, insects, or abiotic stresses. In particular, induced systemic resistance (ISR) refers to the activation of the immune system due to a plant's interaction with beneficial microorganisms. The phenolic compound, 2,4-diacetylphloroglucinol (DAPG), which is produced by beneficial Pseudomonas spp., acts as an ISR elicitor, yet DAPG's mechanism in ISR remains unclear. In this study, transgenic Arabidopsis thaliana plants overexpressing the DAPG hydrolase gene (phlG) were generated to investigate the functioning of DAPG in ISR. DAPG was applied onto 3-week-old A. thaliana Col-0 and these primed plants showed resistance to the pathogens Botrytis cinerea and Pseudomonas syringae pv. tomato DC3000. However, in the phlG transgenic A. thaliana, the ISR was not triggered against these pathogens. The DAPG-mediated ISR phenotype was impaired in transgenic A. thaliana plants overexpressing phlG, thus showing similar disease severity when compared to untreated control plants. Furthermore, the DAPG-treated A. thaliana Col-0 showed an increase in their gene expression levels of PDF1.2 and WRKY70 but this failed to occur in the phlG transgenic lines. Collectively, these experimental results indicate that jasmonic acid/ethylene signal-based defense system is effectively disabled in phlG transgenic A. thaliana lines.
Keywords
2,4-diacetylphloroglucinol (DAPG); antimicrobial; induced systemic resistance (ISR); phlG; Pseudomonas;
Citations & Related Records
Times Cited By KSCI : 4  (Citation Analysis)
연도 인용수 순위
1 Boller, T. and Felix, G. 2009. A renaissance of elicitors: perception of microbe-associated molecular patterns and danger signals by pattern-recognition receptors. Annu. Rev. Plant Biol. 60:379-406.   DOI
2 Bottiglieri, M. and Keel, C. 2006. Characterization of phlG, a hydrolase that specifically degrades the antifungal compound 2,4-diacetylphloroglucinol in the biocontrol agent Pseudomonas flourescens CHA0. Appl. Environ. Microbiol. 72:418-427.   DOI
3 Brazelton, J. N., Pfeufer, E. E., Sweat, T. A., Gardener, B. B. M. and Coenen, C. 2008. 2,4-diacetylphloroglucinol alters plant root development. Mol. Plant-Microbe Interact. 21:1349-1358.   DOI
4 Cao, H., Glazebrook, J., Clarke, J. D., Volko, S. and Dong, X. 1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57-63.   DOI
5 Clough, S. J. and Bent, A. F. 1998. Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J. 16:735-743.   DOI
6 Czechowski, T., Stitt, M., Altmann, T., Udvardi, M. K. and Scheible, W.-R. 2005. Genome-wide identification and testing of superior reference genes for transcript normalization in Arabidopsis. Plant Physiol. 139:5-17.   DOI
7 Stepanova, A. N., Hoyt, J. M., Hamilton, A. A. and Alonso, J. M. 2005. A link between ethylene and auxin uncovered by the characterization of two root-specific ethylene-insensitive mutants in Arabidopsis. Plant Cell 17:2230-2242.   DOI
8 Wang, C., Gao, F., Wu, J., Dai, J., Wei, C. and Li, Y. 2010. Arabidopsis putative deacetylase AtSRT2 regulates basal defense by suppressing PAD4, EDS5 and SID2 expression. Plant Cell Physiol. 51:1291-1299.   DOI
9 Edwards, K., Johnstone, C. and Thompson, C. 1991. A simple and rapid method for the preparation of plant genomic DNA for PCR analysis. Nucleic Acids Res. 19:1349.   DOI
10 Dempsey, D. A. and Klessig, D. F. 2012. SOS - too many signals for systemic acquired resistance? Trends Plant Sci. 17:538-545.   DOI
11 Engelberth, J., Alborn, H. T., Schmelz, E. A. and Tumlinson, J. H. 2004. Airborne signals prime plants against insect herbivore attack. Proc. Natl. Acad. Sci. U. S. A. 101:1781-1785.   DOI
12 Li, J., Brader, G. and Palva, E. T. 2004. The WRKY70 transcription factor: a node of convergence for jasmonate-mediated and salicylate-mediated signals in plant defense. Plant Cell 16:319-331.   DOI
13 Keogh, R. C., Deverall, B. J. and McLeod, S. 1980. Comparison of histological and physiological responses to Phakopsora pachyrhizi in resistant and susceptible soybean. Trans. Br. Mycol. Soc. 74:329-333.   DOI
14 Koo, Y. M., Heo, A. Y. and Choi, H. W. 2020. Salicylic acid as a safe plant protector and growth regulator. Plant Pathol. J. 36:1-10.   DOI
15 Kwak, Y.-S. and Weller, D. M. 2013. Take-all of wheat and natural disease suppression: a review. Plant Pathol. J. 29:125-135.   DOI
16 Lievens, L., Pollier, J., Goossens, A., Beyaert, R. and Staal, J. 2017. Abscisic acid as pathogen effector and immune regulator. Front. Plant Sci. 8:587.
17 Nie, P., Li, X., Wang, S., Guo, J., Zhao, H. and Niu, D. 2017. Induced systemic resistance against Botrytis cinerea by Bacillus cereus AR156 through a JA/ET- and NPR1-dependent signaling pathway and activates PAMP-triggered immunity in Arabidopsis. Front. Plant Sci. 8:238.
18 Beckers, G. J. and Conrath, U. 2007. Priming for stress resistance: from the lab to the field. Curr. Opin. Plant Biol. 10:425-431.   DOI
19 Pfaffl, M. W. 2004. Quantification strategies in real-time PCR. In: A-Z of quantitative PCR, ed. by S. A. Bustin, pp. 87-112. International University Line, La Jolla, CA, USA.
20 Peng, Z. Y., Zhou, X., Li, L., Yu, X., Li, H., Jiang, Z., Cao, G., Bai, M., Wang, X., Jiang, C., Lu, H., Hou, X., Qu, L., Wang, Z., Zuo, J., Fu, X., Su, Z., Li, S. and Guo, H. 2009. Arabidopsis Hormone Database: a comprehensive genetic and phenotypic information database for plant hormone research in Arabidopsis. Nucleic Acids Res. 37 Suppl 1:D975-D982.   DOI
21 Jiang, C.-H., Fan, Z.-H., Xie, P. and Guo, J.-H. 2016. Bacillus cereus AR156 Extracellular Polysaccharides Served as a Novel Micro-associated Molecular Pattern to Induced Systemic Immunity to Pst DC3000 in Arabidopsis. Front. Microbiol. 7:664.
22 van Wees, S. C. M., Luijendijk, M., Smoorenburg, I., van Loon, L. C. and Pieterse, C. M. J. 1999. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on expression of known defenserelated genes but stimulates the expression of the jasmonateinducible gene Atvsp upon challenge. Plant Mol. Biol. 41:537-549.   DOI
23 Weller, D. M., Landa, B. B., Mavrodi, O. V., Schroeder, K. L., De La Fuente, L., Blouin Bankhead, S., Allende Molar, R., Bonsall, R. F., Mavrodi, D. V. and Thomashow, L. S. 2007. Role of 2,4-diacetylphloroglucinol-producing fluorescent Pseudomonas spp. in the defense of plant roots. Plant Biol. 9:4-20.   DOI
24 Weller, D. M., Mavrodi, D. V., van Pelt, J. A., Pieterse, C. M. J., van Loon, L. C. and Bakker, P. A. H. M. 2012. Induced systemic resistance in Arabidopsis thaliana against Pseudomonas syringae pv. tomato by 2,4-diacetylphloroglucinol-producing Pseudomonas fluorescens. Phytopathology 102:403-412.   DOI
25 Yoo, S.-J. and Sang, M. K. 2017. Induced systemic tolerance to muliple stresses including biotic and abiotic factors by rhizobaceria. Res. Plant Dis. 23:99-113 (in Korean).   DOI
26 Fernandez-Bautista, N., Dominguez-Nunez, J. A., Moreno, M. M. C. and Berrocal-Lobo, M. 2016. Plant tissue trypan blue staining during phytopathogen infection. Bio-Protocol 6:e2078.
27 Haas, D. and Keel, C. 2003. Regulation of antibiotic production in root-colonizing Pseudomonas spp. and relevance for biological control of plant disease. Annu. Rev. Phytopathol. 41:117-153.   DOI
28 Iavicoli, A., Boutet, E., Buchala, A. and Metraux, J.-P. 2003. Induced systemic resistance in Arabidopsis thaliana in response to root inoculation with Pseudomonas fluorescens CHA0. Mol. Plant-Microbe Interact. 16:851-858.   DOI
29 Jiang, C.-H., Huang, Z.-Y., Xie, P., Gu, C., Li, K., Wang, D.-C., Yu, Y.-Y., Fan, Z.-H., Wang, C.-J., Wang, Y.-P., Guo, Y.-H. and Guo, J.-H. 2016. Transcription factors WRKY70 and WRKY11 served as regulators in rhizobacterium Bacillus cereus AR156-induced systemic resistance to Pseudomonas syringae pv. tomato DC3000 in Arabidopsis. J. Exp. Bot. 67:157-174.   DOI
30 Journot-Catalino, N., Somssich, I. E., Roby, D. and Kroj, T. 2006. The transcription factors WRKY11 and WRKY17 act as negative regulators of basal resistance in Arabidopsis thaliana. Plant Cell 18:3289-3302.   DOI
31 Keel, C., Schnider, U., Maurhofer, M., Voisard, C., Laville, J., Burger, U. Wirthner, P., Hass, D. and Defago, G. 1992. Suppression of root diseases by Pseudomonas fluorescens CHA0: importance of the bacterial secondary metabolite 2,4-diacetylphloroglucinol. Mol. Plant-Microbe Interact. 5:4-13.   DOI
32 Seif El-Yazal, S. A., Seif El-Yazal, M. A., Dwidar, E. F. and Rady, M. M. 2015. Phytohormone crosstalk research: cytokinin and its crosstalk with other phytohormones. Curr. Protein Pept. Sci. 16:395-405.   DOI
33 Pieterse, C. M., van Wees, S. C., van Pelt, J. A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P. J., and van Loon, L. C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571-1580.   DOI
34 Pieterse, C. M., Zamioudis, C., Berendsen, R. L., Weller, D. M., Van Wees, S. C. M. and Bakker, P. A. H. M. 2014. Induced systemic resistance by beneficial microbes. Annu. Rev. Phytopathol. 52:347-375.   DOI
35 Raaijmakers, J. M. and Weller, D. M. 2001. Exploiting genotypic diversity of 2,4-diacetylphloroglucinol-producing Pseudomonas spp.: characterization of superior root-colonizing P. fluorescens strain Q8r1-96. Appl. Environ. Microbiol. 67:2545-2554.   DOI
36 Siddiqui, Z. A., Baghel, G. and Akhtar, M. S. 2007. Biocontrol of Meloidogyne javanica by Rhizobium and plant growthpromoting rhizobacteria on lentil. World J. Microbiol. Biotechnol. 23:435-441.   DOI