Browse > Article
http://dx.doi.org/10.5423/PPJ.OA.01.2022.0006

Effects of Arugula Vermicompost on the Root-Knot Nematode (Meloidogyne javanica) and the Promotion of Resistance Genes in Tomato Plants  

Rostami, Mahsa (Department of Plant Protection, School of Agriculture, Shiraz University)
Karegar, Akbar (Department of Plant Protection, School of Agriculture, Shiraz University)
Ghorbani, Abozar (Plant Virology Research Centre, College of Agriculture, Shiraz University)
Publication Information
The Plant Pathology Journal / v.38, no.4, 2022 , pp. 261-271 More about this Journal
Abstract
Root-knot nematodes are the most important plant-parasitic nematodes worldwide. Many efforts have been made to find non-chemical, risk-free, and environmentally friendly methods for nematode control. In this study, the effects of compost and vermicompost of arugula (Eruca sativa) on Meloidogyne javanica were investigated in three glasshouse experiments. In addition, the expression of the defense-related genes nonexpressor of pathogenesis-related 1 (NPR1) and lipoxygenase 1 (LOX1) was detected in tomato plants treated with vermicompost of arugula at 0, 2, 7, and 14 days after nematode inoculation. The result showed that the vermicompost of arugula significantly reduced the reproduction factor of the nematode by 54.4% to 70.5% in the three experiments and increased the dry weight of shoots of infected tomato plants. Gene expression analysis showed that LOX1 expression increased on the second and seventh day after nematode inoculation, while NPR1 expression decreased. The vermicompost of arugula showed stronger nematode inhibitory potential than the vermicompost of animal manure. The vermicompost of arugula is superior to arugula compost in suppressing the activity of M. javaniva and reducing its impact. It manipulates the expression of resistance genes and could induce systemic resistance against root-knot nematodes.
Keywords
control; Eruca sativa; induced systemic resistance; plant-parasitic nematode; vermicompost;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Adam, M., Heuer, H. and Hallmann, J. 2014. Bacterial antagonists of fungal pathogens also control root-knot nematodes by induced systemic resistance of tomato plants. PLoS ONE 9:e90402.   DOI
2 Adhikary, S. 2012. Vermicompost, the story of organic gold: a review. Agric. Sci. 3:905-917.   DOI
3 Akram, A., Ongena, M., Duby, F., Dommes, J. and Thonart, P. 2008. Systemic resistance and lipoxygenase-related defence response induced in tomato by Pseudomonas putida strain BTP1. BMC Plant Biol. 8:113.   DOI
4 Tognetti, C., Laos, F., Mazzarino, M. J. and Hernandez, M. T. 2005. Composting vs. vermicomposting: a comparison of end product quality. Compost Sci. Util. 13:6-13.   DOI
5 Tripathi, G. and Bhardwaj, P. 2004. Comparative studies on biomass production, life cycles and composting efficiency of Eisenia fetida (Savigny) and Lampito mauritii (Kinberg). Bioresour. Technol. 92:275-283.   DOI
6 Villatoro-Pulido, M., Priego-Capote, F., Alvarez-Sanchez, B., Saha, S., Philo, M., Obregon-Cano, S., De Haro-Bailon, A., Font, R. and Del Rio-Celestino, M. 2013. An approach to the phytochemical profiling of rocket [Eruca sativa (Mill.) Thell]. J. Sci. Food Agric. 93:3809-3819.   DOI
7 Viswanath, K. K., Varakumar, P., Pamuru, R. R., Basha, S. J., Mehta, S. and Rao, A. D. 2020. Plant lipoxygenases and their role in plant physiology. J. Plant Biol. 63:83-95.   DOI
8 Wu, Y., Zhang, D., Chu, J. Y., Boyle, P., Wang, Y., Brindle, I. D., De Luca, V. and Despres, C. 2012. The Arabidopsis NPR1 protein is a receptor for the plant defense hormone salicylic acid. Cell Rep. 1:639-647.   DOI
9 Wubben, M. J. E., Jin, J. and Baum, T. J. 2008. Cyst nematode parasitism of Arabidopsis thaliana is inhibited by salicylic acid (SA) and elicits uncoupled SA-independent pathogenesis-related gene expression in roots. Mol. Plant-Microbe Interact. 21:424-432.   DOI
10 Wubie, M. and Temesgen, Z. 2019. Resistance mechanisms of tomato (Solanum lycopersicum) to root-knot nematodes (Meloidogyne species). J. Plant Breed. Crop Sci. 11:33-40.   DOI
11 Zhang, Y. and Li, X. 2019. Salicylic acid: biosynthesis, perception, and contributions to plant immunity. Curr. Opin. Plant Biol. 50:29-36.   DOI
12 Molinari, S., Fanelli, E. and Leonetti, P. 2014. Expression of tomato salicylic acid (SA)-responsive pathogenesis-related genes in Mi-1-mediated and SA-induced resistance to root-knot nematodes. Mol. Plant Pathol. 15:255-264.   DOI
13 Parkhi, V., Kumar, V., Campbell, L. M., Bell, A. A., Shah, J. and Rathore, K. S. 2010. Resistance against various fungal pathogens and reniform nematode in transgenic cotton plants expressing Arabidopsis NPR1. Transgenic Res. 19:959-975.   DOI
14 Curto, G., Dallavalle, E. and Lazzeri, L. 2005. Life cycle duration of Meloidogyne incognita and host status of Brassicaceae and Capparaceae selected for glucosinate content. Nematology 7:203-212.   DOI
15 Whitehead, A. G. and Hemming, J. R. 1965. A comparison of some quantitative methods of extracting small vermiform nematodes from soil. Ann. Appl. Biol. 55:25-38.   DOI
16 Hussey, R. S. and Barker, K. R. 1973. A comparison of methods of collecting inocula of Meloidogyne spp., including a new technique. Plant Dis. Rep. 57:1025-1028.
17 Kerry, B. R. 2000. Rhizosphere interactions and the exploitation of microbial agents for the biological control of plant-parasitic nematodes. Annu. Rev. Phytopathol. 38:423-441.   DOI
18 Melakeberhan, H., Xu, A., Kravchenko, A., Mennan, S. and Riga, E. 2006. Potential use of arugula (Eruca sativa L.) as a trap crop for Meloidogyne hapla. Nematology 8:793-799.   DOI
19 Li, N., Han, X., Feng, D., Yuan, D. and Huang, L.-J. 2019. Signaling crosstalk between salicylic acid and ethylene/jasmonate in plant defense: do we understand what they are whispering? Int. J. Mol. Sci .20:671.   DOI
20 Liu, D., Han, W., Zhang, Y. and Jiang, Y. 2019. Evaluation of vermicompost and extracts on tomato root-knot nematode. Bangladesh J. Bot. 48:845-851.
21 Nahar, K., Kyndt, T., De Vleesschauwer, D., Hofte, M. and Gheysen, G. 2011. The jasmonate pathway is a key player in systemically induced defense against root knot nematodes in rice. Plant Physiol. 157:305-316.   DOI
22 Aissani, N., Urgeghe, P. P., Oplos, C., Saba, M., Tocco, G., Petretto, G. L., Eloh, K., Menkissoglu-Spiroudi, U., Ntalli, N. and Caboni, P. 2015. Nematicidal activity of the volatilome of Eruca sativa on Meloidogyne incognita. J. Agric. Food Chem. 63:6120-6125.   DOI
23 Kyndt, T., Vieira, P., Gheysen, G. and de Almeida-Engler, J. 2013. Nematode feeding sites: unique organs in plant roots. Planta 238:807-818.   DOI
24 Leone, A., Melillo, M. T. and Bleve-Zacheo, T. 2001. Lipoxygenase in pea roots subjected to biotic stress. Plant Sci. 161:703-717.   DOI
25 Matthiessen, J. N. and Kirkegaard, J. A. 2006. Biofumigation and enhanced biodegradation: opportunity and challenge in soilborne pest and disease management. Crit. Rev. Plant Sci. 25:235-265.   DOI
26 Akhtar, M. and Mahmood, I. 1993. Control of plant-parasitic nematodes with "Nimin" and some plant oils by bare-root dip treatment. Nematol. Mediterr. 21:89-92.
27 Arancon, N. Q., Edwards, C. A., Lee, S. S. and Yardim, E. 2002. Management of plant parasitic nematode populations by use of vermicomposts. In: Proceedings of brighton crop protection conference-pests and diseases, pp. 705-710. British Crop Protection Council, Farnham, UK.
28 Backer, R., Naidoo, S. and van den Berg, N. 2019. The nonexpressor of pathogenesis-related genes 1 (NPR1) and related family: mechanistic insights in plant disease resistance. Front. Plant Sci.10:102.   DOI
29 Coyne, D. L., Nicol, J. M. and Claudius-Cole, B. 2007. Practical plant nematology: a field and laboratory guide. International Institute of Tropical Agriculture, Cotonou, Benin. 91 pp.
30 An, C. and Mou, Z. 2011. Salicylic acid and its function in plant immunity. J. Integr. Plant Biol. 53:412-428.   DOI
31 Sarikamis, G., Aydinli, G. and Mennan, S. 2017. Glucosinolates in some brassica species as sources of bioactive compounds against root knot nematodes. Int. J. Adv. Res. 5:271-278.   DOI
32 Ntalli, N. and Caboni, P. 2017. A review of isothiocyanates bio-fumigation activity on plant parasitic nematodes. Phytochem. Rev. 16:827-834.   DOI
33 Pathma, J. and Sakthivel, N. 2012. Microbial diversity of vermicompost bacteria that exhibit useful agricultural traits and waste management potential. SpringerPlus 1:26.   DOI
34 Raphael, K. and Velmourougane, K. 2011. Chemical and microbiological changes during vermicomposting of coffee pulp using exotic (Eudrilus eugeniae) and native earthworm (Perionyx ceylanesis) species. Biodegradation 22:497-507.   DOI
35 Sikora, R. A., Pocasangre, L., zum Felde, A., Niere, B., Vu, T. T. and Dababat, A. A. 2008. Mutualistic endophytic fungi and in-planta suppressiveness to plant parasitic nematodes. Biol. Control 46:15-23.   DOI
36 Melan, M. A., Dong, X., Endara, M. E., Davis, K. R., Ausubel, F. M. and Peterman, T. K. 1993. An Arabidopsis thaliana lipoxygenase gene can be induced by pathogens, abscisic acid, and methyl jasmonate. Plant Physiol. 101:441-450.   DOI
37 Daneel, M., Engelbrecht, E., Fourie, H. and Ahuja, P. 2018. The host status of Brassicaceae to Meloidogyne and their effects as cover and biofumigant crops on root-knot nematode populations associated with potato and tomato under South African field conditions. Crop Prot. 110:198-206.   DOI
38 de Medeiros, H. A., de Araujo Filho, J. V., de Freitas, L. G., Castillo, P., Rubio, M. B., Hermosa, R. and Monte, E. 2017. Tomato progeny inherit resistance to the nematode Meloidogyne javanica linked to plant growth induced by the biocontrol fungus Trichoderma atroviride. Sci. Rep. 7:40216.   DOI
39 Dong, K., Dean, R. A., Fortnum, B. A. and Lewis, S. A. 2001. Development of PCR primers to identify species of root-knot nematodes: Meloidogyne arenaria, M. hapla, M. incognita and M. javanica. Nematropica 31:271-280.
40 Xiao, Z., Liu, M., Jiang, L., Chen, X., Griffiths, B. S., Li, H. and Hu, F. 2016. Vermicompost increases defense against root-knot nematode (Meloidogyne incognita) in tomato plants. Appl. Soil Ecol. 105:177-186.   DOI
41 Garg, P., Gupta, A. and Satya, S. 2006. Vermicomposting of different types of waste using Eisenia foetida: a comparative study. Bioresour. Technol. 97:391-395.   DOI
42 Dong, L. Q. and Zhang, K. Q. 2006. Microbial control of plant-parasitic nematodes: a five-party interaction. Plant Soil 288:31-45.   DOI
43 Mishra, S., Wang, K.-H., Sipes, B. S. and Tian, M. 2018. Induction of host-plant resistance in cucumber by vermicompost tea against root-knot nematode. Nematropica 48:164-171.
44 Puga-Freitas, R., Barot, S., Taconnat, L., Renou, J.-P. and Blouin, M. 2012. Signal molecules mediate the impact of the earthworm Aporrectodea caliginosa on growth, development and defence of the plant Arabidopsis thaliana. PLoS ONE 7:e49504.   DOI
45 Gopinath, R. and Prakash, M. 2014. Isolation of plant growth promoting rhizobacteria (PGPR) from vermicompost and effect on growth of green gram (Vigna radiata L.). Int. J. Curr. Microbiol. Appl. Sci. 3:1072-1081.
46 Edwards, C. A., Arancon, N. Q. and Sherman, R. L. 2011. Vermiculture technology: earthworms, organic wastes, and environmental management. CRC Press, Boca Raton, FL, USA. 624 pp.
47 Edwards, S. and Ploeg, A. 2014. Evaluation of 31 potential biofumigant brassicaceous plants as hosts for three Meloiodogyne species. J. Nematol. 46:287-295.
48 Gao, X., Starr, J., Gobel, C., Engelberth, J., Feussner, I., Tumlinson, J. and Kolomiets, M. 2008. Maize 9-lipoxygenase ZmLOX3 controls development, root-specific expression of defense genes, and resistance to root-knot nematodes. Mol. Plant-Microbe Interact. 21:98-109.   DOI
49 Hildebrand, D. F. 1989. Lipoxygenases. Physiol. Plant. 76:249-253.   DOI
50 Burkett-Cadena, M., Kokalis-Burelle, N., Lawrence, K. S., van Santen, E. and Kloepper, J. W. 2008. Suppressiveness of rootknot nematodes mediated by rhizobacteria. Biol. Control 47:55-59.   DOI
51 Hoitink, H. A. J. and Grebus, M. E. 1997. Composts and the control of plant diseases. In: Humic substances, peats and sludges: health and environmental aspects, eds. by M. H. B. Hayes and W. S. Wilson, pp. 359-366. The Royal Society of Chemistry, Cambridge, UK.
52 Siddiqui, I. A. and Shaukat, S. S. 2002. Rhizobacteria-mediated induction of systemic resistance (ISR) in tomato against Meloidogyne javanica. J. Phytopathol. 150:469-473.   DOI
53 Priya, D. B., Somasekhar, N., Prasad, J. S. and Kirti, P. B. 2011. Transgenic tobacco plants constitutively expressing Arabidopsis NPR1 show enhanced resistance to root-knot nematode, Meloidogyne incognita. BMC Res. Notes 4:231.   DOI
54 Ntalli, N., Zioga, D., Argyropoulou, D. M., Papatheodorou, M. E., Menkissoglu-Spiroudi, U. and Monokrousos, N. 2019. Anise, parsley and rocket as nematicidal soil amendments and their impact on non-target soil organisms. Appl. Soil Ecol. 143:17-25.   DOI
55 Pasini, F., Verardo, V., Cerretani, L., Caboni, M. F. and D'Antuono, L. F. 2011. Rocket salad (Diplotaxis and Eruca spp.) sensory analysis and relation with glucosinolate and phenolic content. J. Sci. Food Agric. 91:2858-2864.   DOI
56 Ramamoorthy, V., Viswanathan, R., Raguchander, T., Prakasam, V. and Samiyappan, R. 2001. Induction of systemic resistance by plant growth promoting rhizobacteria in crop plants against pests and diseases. Crop Prot. 20:1-11.   DOI
57 Rostami, M., Olia, M. and Arabi, M. 2014. Evaluation of the effects of earthworm Eisenia fetida-based products on the pathogenicity of root-knot nematode (Meloidogyne javanica) infecting cucumber. Int. J. Recycl. Org. Waste Agric. 3:58.   DOI
58 Rubio, M. B., Quijada, N. M., Perez, E., Dominguez, S., Monte, E. and Hermosa, R. 2014. Identifying beneficial qualities of Trichoderma parareesei for plants. Appl. Environ. Microbiol. 80:1864-1873.   DOI
59 Sasser, J. N. 1977. Worldwide dissemination and importance of the root-knot nematodes, Meloidogyne spp. J. Nematol. 9:26-29
60 Aydinli, G. and Mennan, S. 2018. Biofumigation studies by using Raphanus sativus and Eruca sativa as a winter cycle crops to control root-knot nematodes. Braz. Arch. Biol. Technol. 61:e18180249.
61 Chapman, H. D. and Pratt, P. F. 1961. Methods of analysis for soils, plants and waters. University of California, Berkeley, CA, USA. 309 pp.
62 Fourie, H., Ahuja, P., Lammers, J. and Daneel, M. 2016. Brassicacea-based management strategies as an alternative to combat nematode pests: a synopsis. Crop Prot. 80:21-41.   DOI
63 Ghasemi Pirbalouti, A., Sajjadi, S. E. and Parang, K. 2014. A review (research and patents) on jasmonic acid and its derivatives. Arch. Pharm. 347:229-239.   DOI
64 Hoenig, M. 2005. Sample dissolution for elemental analysis: dry ashing. In: Encyclopedia of analytical science, 2nd ed., eds. by P. Worsfold, A. Townshend and C. Poole, pp. 131-136. Elsevier Academic Press, Amsterdam, Netherlands.
65 Singh, A., Karmegam, N., Singh, G. S., Bhadauria, T., Chang, S. W., Awasthi, M. K., Sudhakar, S., Arunachalam, K. D., Biruntha, M. and Ravindran, B. 2020. Earthworms and vermicompost: an eco-friendly approach for repaying nature's debt. Environ. Geochem. Health 42:1617-1642.   DOI
66 Kammerhofer, N., Radakovic, Z., Regis, J. M. A., Dobrev, P., Vankova, R., Grundler, F. M. W., Siddique, S., Hofmann, J. and Wieczorek, K. 2015. Role of stress-related hormones in plant defence during early infection of the cyst nematode Heterodera schachtii in Arabidopsis. New Phytol. 207:778-789.   DOI
67 Lazcano, C., Gomez-Brandon, M. and Dominguez, J. 2008. Comparison of the effectiveness of composting and vermicomposting for the biological stabilization of cattle manure. Chemosphere 72:1013-1019.   DOI
68 Bremner, J. M. and Mulvaney, C. S. 1982. Nitrogen-total. In: Methods of soil analysis, Part 2: chemical and microbiological properties, eds. by A. L. Page, R. H. Miller and D. R. Keeney, pp. 595-624. American Society of Agronomy, Madison, WI, USA.
69 Livak, K. J. and Schmittgen, T. D. 2001. Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402-408.   DOI