• Title/Summary/Keyword: Systemic insecticide

Search Result 31, Processing Time 0.03 seconds

Enzyme Immunoassay for On-line Sensing of the Insecticide Imidaclopird Residues (살충제 이미다크로프리드 잔류물의 실시간 측정용 효소면역분석법)

  • 송석진;조한근
    • Journal of Biosystems Engineering
    • /
    • v.28 no.6
    • /
    • pp.505-510
    • /
    • 2003
  • In Korea, due to its broad efficacy as a systemic insecticide, imidacloprid has been widely used in rice paddies to control sucking insects, soil insects, and some chewing insects and in apple orchards to control various insects pests. To quantify the imidacloprid residue concentrations, samples are assayed in vitro using enzyme-linked immunosorbent assays(ELISA). These assays generally require several hours to perform. As a biosensor, a competitive imidacloprid ELISA was modified to measure insecticide concentrations. It was found that a total assay time of 15 min(10-min antibody-antigen binding, and 5-min substrate development) is sufficient for monitoring imidacloprid concentrations. Further work is needed to improve the sensitivity of the measurement protocol.

Induced Drought Tolerance by the Insecticide Imidacloprid in Plant (살충제 이미다클로프리드에 의한 식물 가뭄 내성 유도)

  • Han, Song-Hee;Kim, Chul-Hong;Lee, Jang-Hoon;Kim, In-Seon;Kim, Young-Cheol
    • Korean Journal of Environmental Agriculture
    • /
    • v.29 no.2
    • /
    • pp.159-164
    • /
    • 2010
  • Imidacloprid is a systemic insecticide which has been used widely in various crops to control insects. In the present study, we demonstrated that pre-treatment of imidacloprid significantly induced tolerance to drought in plant. Relative water content, chlorophyll levels, and recovery rate upon rehydration after drought stress in tobacco plants pre-treated with imidacloprid were higher levels than the control plants. Induced drought tolerance by imidacloprid treatments in red pepper was also demonstrated by measurement of recovery rate and fresh weight upon drought stress. Taken together, our results suggest that imidacloprid, in addition to exerting direct insecticidal activity, may also protect plants by induced tolerance to drought in plant.

Comparison of insecticide susceptibility and enzyme activities of biotype B and Q of Bemisia tabaci (담배가루이 Biotype B와 Q의 약제감수성과 효소활성 비교)

  • Kim, Eun-Hee;Sung, Jae-Wook;Yang, Jeong-Oh;Ahn, Hee-Geun;Yoon, Chang-Mann;Seo, Mi-Ja;Kim, Gil-Hah
    • The Korean Journal of Pesticide Science
    • /
    • v.11 no.4
    • /
    • pp.320-330
    • /
    • 2007
  • Mitochondrial 16S DNA sequences of Bemisia tabaci which were collected on rose greenhouse of Iwol and Jinchen in Chungbuk and red pepper field of Miryang, Gyeongnam, were analyzed. The mtCOI PCR product of B. tabaci collected on red pepper field of Miryang were digested with EcoT14I (Sty I) into two fragments 555bp and 311bp, while the PCR product of B. tabaci collected on rose greenhouse of Iwol were digested with Sty I into two fragments of 560bp and 306bp. As a result, B. tabaci collected on red pepper reveal biotype Q and those on rose greenhouse was biotype B. These was difference between two biotypes in insecticide susceptibility, and the biotype B was more susceptible than biotype Q. As a result of foliar systemic test, root-uptake systemic test and residual effect, the biotype B was more susceptible. In case of inhibition effect on enzyme activities of fenitrothion (organophosphorous) and fenothiocarb (carbamate), those of biotype Q was higher than those of biotype B. These results indicate that biotype Q was more resistant than biotype B against 12 insecticides.

Activity and control effects of insecticides to American serpentine leafminer, Liriomyza trifolii(Diptera: Agromyzidae) (아메리카잎굴파리 (Liriomyza trifolii)에 대한 살충활성과 방제효과)

  • Kim, Gil-Hah;Lee, Young-Su;Park, Sun-Young;Park, Yong-Seong;Kim, Jeong-Wha
    • The Korean Journal of Pesticide Science
    • /
    • v.5 no.1
    • /
    • pp.46-54
    • /
    • 2001
  • These studies were carried out to investigate the toxicities of 33 registered insecticide to the American serpentine leafminer, Liriomyza trifolii. Insecticidal activities were evaluated by testing systemic action and residual effect in the laboratory, and control efficacy and phytotoxicity in the greenhouse. All insecticides used in this study did not effect on the egg of L. trifolii, although spinosad showed 70% of egg-hatch suppression. For L. trifolii larvae ($2{\sim}3$ instar), the insecticides with over 95% of insecticidal activity were abamectin, cartap, cyromazine, emamectin benzoate, diflubenzuron + chlorpyrifos. The Insecticide what showed over 90% of insecticidal activity or neonate larvae were abamectin, cartap, emamectin benzoate, diflubenzuron + chlorpyrifos and milbemectin. Only cartap + buprofezin showed over 95% insecticidal activity against L. trifolii pupae. Almost insecticides used in this study little or not effected on the adult of L. trifolii. Emamectin benzoate and milbemectin showed moderate foliar systemic effects on eggs of L. trifolii (53.3, 47.9%, respectively). However, other insecticides showed little systemic effect. For larvae and adults, all insecticides showed low systemic effects. Insecticides with over 90% residual effect for 10 days were abamectin, emamectin benzoate and milbemectin (91.4, 90.4, 91.9%, respectively). In the control efficacy test on L. trifolii 90% of control values were obtained at 14th day after treatment of the insecticides including abamectin, cyromazine, emamectin benzoate and milbemectin. Cartap and cartap + buprofezin showed slight phytotoxicity on kidney bean leaf, however, other insecticides showed no phytotoxic effects. These results indicate that abamectin, emamectin benzoate and milbemectin can be used for tile control of L. trifolii in field.

  • PDF

Control of Bemisia tabaci Genn. (Hemiptera: Aleyrodidae) Adults on Tomato Plants using Trap Plants with Systemic Insecticide (트랩식물과 침투이행성 살충제를 이용한 토마토 담배가루이 성충 방제효과)

  • Choi, Yong-Seok;Hwang, In-Su;Lee, Gyung-Joo;Kim, Gyung-Je
    • Korean journal of applied entomology
    • /
    • v.55 no.2
    • /
    • pp.109-117
    • /
    • 2016
  • We investigated the control of Bemisia tabaci adults in tomato greenhouses using the eggplant as a trap plant with 4 systemic chemicals. The control effect of dinotefuran SG 50% on tobacco whitefly adults was 80% mortality, the highest than that cyantraniliprole, pyridaben and clothianidin, 51.0%, 12.4% and 11.0% respectively when all chemicals with recommended doses were used. Dinotefuran was applied at various doses and was observed to be most effective above 200ppm (88.4%)t. The control effect of dinotefuran lasted for appromimately nine 9 days and the density of tobacco whitefly adults increased there after. In field tests, the densities of tobacco whitefly adults on tomato shoots were highest at points 0, 15 and 20 m from the eggplant traps and lowest at 5 and 10 m. When the density of tobacco whitefly was low and the eggplants with dinotefuran SG 50% were placed in the tomato greenhouse at 10 m intervals, the overall density of tobacco whitefly adults was lower. In addition, densities were higher at the side of the greenhouse than in the interior and further away from the eggplant. When the density of tobacco whitefly was high and the eggplants with dinotefuran were placed at 5 m intervals, the density of tobacco whitefly at each 5 m point decreased. Theses results confirm that the eggplant is an effective trap plant for attracting tobacco whitefly audlts and combined with dinotefuran SG 50% decreases the density of tobacco whitefly in tomato greenhouses.

Effects of Root Zone Applications of Some Systemic Insecticides for Control of the Brown Planthopper, Nilaparvata lugens ($St{\aa}l$) (Homoptera: Delphacidae) (벼멸구에 대한 여러 가지 침투성 살충제의 근부처리 효과)

  • Pham, Hong-Hien;Kim, Jong-Kyu;Choi, Byeong-Ryeol;Song, Yoo-Han
    • The Korean Journal of Pesticide Science
    • /
    • v.12 no.3
    • /
    • pp.236-242
    • /
    • 2008
  • Laboratory and greenhouse experiments were conducted to evaluate the effect of root zone application of some systemic insecticides for control of the brown planthopper (BPH), Nilaparvata lugens, as one of the management option to minimize the adverse effects and maximize the efficacy of insecticide application. Five systemic insecticides, namely, carbofuran, carbosulfan, diazinon, ethoprophos and imidacloprid, as granular formulation were placed in the root zone and measured the mortality, fecundity, and nymphal survivorship of the planthopper. Diazinon and ethoprophos did not show the significant mortality of the BPH. When the BPH were inoculated at the day of carbofuran treatment, adult mortality was shown almost 100% at seven days after treatment and BPH nymphs were remained very few on rice at 25 days after treatment. When carbofuran were placed 10 days before the BPH inoculation, it showed almost 100% adult mortality after one day, and no nymphs were found until 25 day after inoculation. Efficacy of carbofuran on BPH when applied in 10 day-old rice was higher than in 30 day-old rice. These results indicated that the root zone application of carbofuran can control N. lugens effectively with less adverse effect to the natural enemies inhabited on rice plants.

Toxicity of several insecticides to Dichromothrips smithi Zimmermann(Thysanoptera : Thripidae) (난총채벌레의 살충제 감수성)

  • Ahn, Ki-Su;Lee, Ki-Yeol;Kang, Hyu-Jung;Park, Sung-Kyu;Kim, Gil-Hah
    • The Korean Journal of Pesticide Science
    • /
    • v.6 no.4
    • /
    • pp.244-249
    • /
    • 2002
  • This study was carried out to investigate the toxicities of 22 insecticides to Dichromothrips smithi. Insecticidal activity was evaluated by testing systemic action and residual effect in laboratory. All insecticides used in this study did not affect on the egg of D. smithi, although organophosphates such as fenitrothion, fenthion, methidathion, phenthoate, and phenthoate+ethofenprox suppressed the egg hatchability completely. On D. smithi larva fenitrothion, fenthion, methidathion, phenthoate, ethofenprox, thiamethoxam, abamectin, chlorfenapyr, emamectin benzoate, fipronil, spinosad, and phenthoate+ethofenprox showed 100% insecticidal activity. On D. smithi adult fenitrothion, fenthion, methidathion, phenthoate, ethofenprox, abamectin, emamectin benzoate, fipronil, spinosad, and phenthoate+ethofenprox showed 100% insecticidal activity. Root-uptake systemic effects of phenthoate on the larva of D. smithi was 43.3%. Whereas, systemic effect of other insecticides was less than 20%. Insecticide with more than 80% residual effect for 7 days after treatment were fenitrothion, fenthion, methidathion, phenthoate, ethofenprox, emamectin benzoate, fipronil, spinosad, and phenthoate.

Susceptibility of greenhouse whitefly, Trialeurodes vaporariorum (Homoptera: Aleyrodidae) against commercially registered insecticides in Korea (국내등록사용중인 살충제에 대한 온실가루이의 감수성)

  • Kim, Chang-Woo;Kim, Jeong-Wha;Kim, Gil-Hah
    • The Korean Journal of Pesticide Science
    • /
    • v.4 no.3
    • /
    • pp.75-81
    • /
    • 2000
  • These studies were carried out to investigate the toxicities of 38 registered insecticides to the sweetpotato whitefly (Trialeurodes vaporariorum). Insecticide activities were evaluated by testing systemic action and residual effect in the laboratory, and control efficacy in the greenhouse. All experiments were tested at the recommended concentration(ppm) of each insecticides. Insect growth regulators (IGRs), only pyriproxyfen showed over 90% of ovicidal effect. The insecticides that showed over 90% of larvicidal activity oil 3rd nymphal instars were abamectin, acetamiprid, chlorpyrifos-methyl, imidacloprid, pyripoxyfen, and acetamiprid+ethofenprox. Insecticides with 100% adulticidal activity were abamectin, acephate, acetamiprid, benfurcarb, bifenthrin, furathiocarb, endosulfan, fenitrothion, imidacloprid, phenthoate, pymetrozine, acetamiprid + ethofenprox, ethofenprox + diazinon, furathiocarb + difluberlzuron, and triazamate+${\alpha}$-cypermethrin. Abamectin, acetamiprid, imidacloprid, pyriproxyfen, and acetamiprid + ethofenpox showed both residual effect and systemic activity. In tile control efficacy test on B. tabaci, 90% control values were obtained at 11th day after treatment of the insecticides including abamectin, acetamiprid, imidacloprid, pyripoxyfen and acetamiprid + ethofenprox. These results indicate that abamectin, acetamiprid, imidacloprid, pyriproxyfen and acetamiprid + ethofenprox can be used for tile control of B. tabaci in field.

  • PDF

Property of action of new insecticide, flupyrazofos against diamondback moth, Plutella xylostella (신규 살충제 flupyrazofos의 배추좀나방에 대한 작용특성)

  • Kim, Gil-Hah;Moon, Sun-Ju;Chang, Young-Duck;Cho, Kwang-Yun
    • The Korean Journal of Pesticide Science
    • /
    • v.2 no.3
    • /
    • pp.117-125
    • /
    • 1998
  • Flupyrazofos (O,O-diethyl-O-(1-phenyl-3-trifluoromethyl-5-pyrazoyl)thiophosphoric acid ester) is a new organo-phosphorous insecticide. Flupyrazofos has exhibited excellent activity against diamondback moth (Plutella xylostella, DBM), and it is highly activity against rice armyworm(Pseudaleta separata) and cotton caterpillar(Palpita indicae). Flupyrazofos has then revealed outstanding both rapidity and residual action for DBM, although no systemic actions were observed and no cross-resistances were found to the resistance strains (Op-R, Py-R, IGR-R). Also, susceptibilities of five local strains to flupyrazofos were similar to those of the susceptible strain. These results indicate that flupyrazofos has considerable potential for controlling diamondback moth, rice armyworm and cotton caterpillar in field.

  • PDF

Chemical Control Effect Against Spot Clothing Wax Cicada, Lycorma delicatula (Hemiptera: Fulgoridae) Nymphs and Adults (꽃매미(Lycorma delicatula) 약충과 성충에 대한 약제방제 효과)

  • Kim, Sun-Kook;Lee, Gi-Yeul;Shin, Yon-Ho;Kim, Gil-Bah
    • The Korean Journal of Pesticide Science
    • /
    • v.14 no.4
    • /
    • pp.440-445
    • /
    • 2010
  • This study was carried out to investigate the toxicities of five registered insecticides to the Lycorma delicatula nymphs and adults. Insecticidal activities were evaluated by testing systemic and residual effects in the laboratory, and control efficacy in the vineyard. For the 3rd nymphal instars and adults, etofenprox+diazinon, chlorpyrifos, etofenprox, dinotefuran and imidacloprid showed perfect insecticidal activity. The systemic effects of dinotefuran and etofenprox+diazinon on grape roots at half concentration were showed the adult mortality of 82.2% and 84.4%, respectively. Chlorpyrifos at recommended concentration was showed mortality of 86.0%. The leaf systemic effects at recommended and half concentrations of all insecticides except dinotefuran were lower than 65% but the mortality at double concentration of chlorpyrifos, dinotefuran, etofenprox were more than 82%. The residual effect between etofenprox+diazinon and dinotefuran at recommended and double concentrations were 100% at 14 days after treatment, the other insecticides have low efficacy. All the four insecticides showed 87% control value on nymphs in the field test and adults appeared more than 96% control value st and adinotefuran, etofenprox+diazinon, however, the other insecticides decreased to 59.1 % and 61.2%. Therefore, dinotefuran and etofenprox+diazinon showing high systemic effects to roots and long residual effects to leafs have high control efficacies.