Yim, Jong Su;Kleinn, Christoph;Kim, Sung Ho;Jeong, Jin-Hyun;Shin, Man Yong
Journal of Korean Society of Forest Science
/
v.98
no.2
/
pp.133-141
/
2009
This study was conducted to support for determining an efficient sampling design for forest resources assessments in South Korea with respect to statistical efficiency. For this objective, different systematic sampling designs were simulated and compared based on an artificial forest population that had been built from field sample data and satellite data in Yang-Pyeong County, Korea. Using the k-NN technique, two thematic maps (growing stock and forest cover type per pixel unit) across the test area were generated; field data (n=191) and Landsat ETM+ were used as source data. Four sampling designs (systematic sampling, systematic sampling for post-stratification, systematic cluster sampling, and stratified systematic sampling) were employed as optimum sampling design candidates. In order to compute error variance, the Monte Carlo simulation was used (k=1,000). Then, sampling error and relative efficiency were compared. When the objective of an inventory was to obtain estimations for the entire population, systematic cluster sampling was superior to the other sampling designs. If its objective is to obtain estimations for each sub-population, post-stratification gave a better estimation. In order to successfully perform this procedure, it requires clear definitions of strata of interest per field observation unit for efficient stratification.
Either systematic sampling or stratified sampling is usually applied to the business conditions survey when companies don't have much difference in their size. But the cutoff systematic sampling is an efficient method when only a few companies are so large that the total of them almost equals to the total of whole companies. Throughout this paper, three estimators of total and their variance estimations depending on three kinds of sampling schemes are discussed, and are compared with them via their variances. It is proved that the cut-off systematic sampling is most efficient by using a real data of the logging business conditions survey.
The Korean bottom trawl survey has been deployed on a regular basis for about the last decade as part of groundfish stock assessments. The regularity indicates that they sample groundfish once per grid cell whose sides are half of one latitude and that of one longitude, respectively, and whose inside is furthermore divided into nine nested grids. Unless they have a special reason (e.g., running into a rocky bottom), their sample location is at the center grid of the nine nested grids. Given data collected by the survey, we intended to show how to appropriately estimate not only the survey index of a fish stock but also its uncertainty. For the regularity reason, we applied the systematic sampling theory for the above purposes and compared its results with a reference, which was based on the simple random sampling. When using the survey data about 11 fish stocks, collected by the spring and fall surveys in 2014, the survey indices of those stocks estimated under the systematic sampling were overall more precise than those under the simple random sampling. In estimates of the survey indices in number, the standard errors of those estimates under the systematic sampling were reduced from those under the simple random sampling by 0.23~27.44%, while in estimates of the survey indices in weight, they decreased by 0.04~31.97%. In bias of the estimates, the systematic sampling was the same as the simple random sampling. Our paper is first in formally showing how to apply the systematic sampling theory to the actual data collected by the Korean bottom trawl surveys.
Communications for Statistical Applications and Methods
/
v.14
no.3
/
pp.667-677
/
2007
In this paper, we propose a method for estimating the mean of a population which has a linear trend, when both n, the sample size, and k, the reciprocal of the sampling fraction, are odd numbers. The proposed method, not having the drawbacks of centered systematic sampling, centered modified sampling and centered balanced sampling, consists of selecting a sample by balanced systematic sampling and estimating the population mean by using interpolation. We compare the efficiency of the proposed method and existing methods under the criterion of the expected mean square error based on the infinite superpopulation model.
Kim, Young-Won;Kim, Yeny;Han, Hye-Eun;Kwak, Eun-Sun
The Korean Journal of Applied Statistics
/
v.26
no.6
/
pp.1033-1041
/
2013
In this paper, we investigate several variance estimators for pps systematic sampling. Unfortunately, there is no unbiased variance estimators for a systematic sample because systematic sampling can be regarded as a random selection of one cluster. This study provides guidance on which variance estimator may be more appropriate than others in several circumstances. We judge the efficiency of variance estimators for systematic sampling based on of their relative biases and relative mean square error. Also, we investigate variance estimation problems for two-stage systematic sampling applied for the Food Raw Material Consumption Survey and the Establishment Labor Force Survey simulation study, in order to consider the popular two-stage pps systematic sample design for establishment and household survey in Korea.
A new method is developed for estimating the mean of a population which has a linear trend. The proposed estimator is based on the balanced systematic sampling method and the concept of interpolation. The efficiency of the proposed method is compared with that of existing methods.
Mirzaei, Mehrdad;Bonyad, Amir Eslam;Bijarpas, Mahboobeh Mohebi;Golmohamadi, Fatemeh
Journal of Forest and Environmental Science
/
v.31
no.2
/
pp.73-77
/
2015
Acquiring accurate quantitative and qualitative information is necessary for the technical and scientific management of forest stands. In this study, stratification and systematic random sampling methods were used to estimation of quantitative characteristics in study area. The estimator ($((E%)^2xT)$) was used to compare the systematic random and stratified sampling methods. 100 percent inventory was carried out in an area of 400 hectares; characteristics as: tree density, crown cover (canopy), and basal area were measured. Tree density of stands was compared through systemic random and stratified sampling methods. Findings of the study reveal that stratified sampling method gives a better representation of estimates than systematic random sampling.
Proceedings of the Korean Association for Survey Research Conference
/
2001.04a
/
pp.153-165
/
2001
In this paper we point out another advantage of systematic sampling over simple random sampling, which have not yet been spelled out in the literature. After a single sample is drawn by a sampling scheme, it is important to check whether the achieved sample represents the pupulation well or out. Therefore, a sampling scheme which avoids the possibility of selecting non-preferred samples is desirable. The simulation results are given to illustrate that, in the ordered population, the possibility of selecting non-preferred sample by systematic sampling is lower than that by simple random sampling.
In this paper we point out another advantage of systematic sampling over simple random sampling, which have not yet been spelled out in the literature. After a single sample is drawn by a sampling scheme, it is important to check whether the achived sample represents the population well or not. Therefore. a sampling scheme which avoids the possibility of selecting non-preferred samples is desirable. The simulation results are given to illustrate that, in the ordered population, the possibility of selecting non-preferred sample by systematic sampling is lower than that by simple random sampling.
Journal of the Korean Data and Information Science Society
/
v.11
no.1
/
pp.91-101
/
2000
We propose a new method for estimating the mean of a population which has a linear trend. The suggested estimator is based on the centered balanced systematic sampling method and the concept of interpolation and extrapolation. The efficiency of the proposed method is compared with that of existing methods.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.