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A New Estimator of Population Mean Based on
Centered Balanced Systematic Sampling!
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Abstract
We propose a new method for estimating the mean of a population which
has a linear trend. The suggested estimator is based on the centered balanced
systematic sampling method and the concept of interpolation and extrapola-
tion. The efficiency of the proposed method is compared with that of existing
methods.
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1. Introduction

In performing sample surveys, we occasionally encounter a population with a
linear trend. For example, suppose we wish to estimate the average sales of the
supermarkets in a certain city. If we arrange the supermarkets in that city in in-
creasing or decreasing order of the number of employees, there is expected to be a
linear trend in this population.

In estimating the mean of a population which has a linear trend, ordinary sys-
tematic sampling (OSS) is known to be much better than simple random sampling
(SRS). Several versions of systematic sampling have been suggested so far. Among
them, end corrections (EC) method proposed by Yates (1948), centered systematic
sampling (CSS) proposed by Madow (1953), balanced systematic sampling (BSS)
proposed by Sethi (1965) and Murthy (1967), and modified systematic sampling
(MSS) proposed by Singh et al. (1968) are well-known methods. Combining the
concepts of CSS and BSS, Kim (1985) proposed centered balanced systematic sam-
pling (CBSS). Kim (1998, 1999a, 1999b) also developed some estimation methods
by applying the concepts of interpolation and extrapolation to BSS and MSS.
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In this paper, a new method is developed for estimating the mean of a popu-
lation which has a linear trend. The method, based on CBSS, interpolation and
extrapolation, will be developed for use in the case when the sample size n (> 3) is
an odd number and k (the reciprocal of the sampling fraction) is an even number,
and will be compared with existing methods under the expected mean square error
criterion based on the infinite superpopulation model introduced by Cochran (1946).

2. Development of the method

Suppose we have a population of size N = kn, the units of which are denoted
by U1, Us, - - -, Uny. We wish to select a sample of size n from this population.
Let us define the clusters C; (t=1,2,---,k) by

C;, = Uisag-1k 9 =1,2,- - ,n/2} U {Ugjrsr—i 1 j = 1,2, - -,n/2}

for n even, and

!

Ci = {Ui+2(j—~l)k : j = 1,2, tey (TL+ 1)/2} U {U2]'k+1_,' _7 = 1,2, cty (n - 1)/2}

for n odd. For example, if N = 20, n = 5 and k = 4, then the four clusters are
C; = {U1,Us, Uy, Uss, Urz}, Cy = {Us, Uz, Uso, Uns, Uss}, Cy = {Us, Us, Ui, Usa, Ue},
and Cy = {Uy, Us, U1a, Uys, Uy}

We briefly review the CBSS method proposed by Kim (1985). If k is odd, ka +1)/2
is selected. So CBSS is the same as CSS in this case. If k is even (let us consider only
this case from now on), either C; /g OT C; /2+1 18 selected with respective probability
1/2.

The sample mean Fopgg obtained by CBSS has mean square error

1 ’ —_— ! —_—
MSE(Gcpss) = 5{(Uk/2 — Y)? + (W01 — V),

where ; is the mean value for the units in C} (i = 1,2, - - -, k).
Throughout this paper the following notation will be used :
Yi : value for the ith unit in the population (i =1,2,-- -, N),
N
Y = %Z y; : population mean to be estimated,
i=1

!

y;;  value for the jth unit in C’; (t=1,2,--k; j=1,2,--.,n), that is,

y;] = Yit(G-1k (.7 = 173757 N — 1)

Yii = Y1-irjk (1 =2,4,6,---,n)
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for n even, and

y;j = Yitr(G-Dk (1=1,3,5,---,n)

Yy = Yi-itgk (.7 = 2, 4,6,--,n— 1)
for n odd

Zym : mean for the units in C; (i =1,2,- - -, k).
] 1

Now we introduce a new method for estimating the population mean Y. This
method involves the same sampling method as CBSS, but it estimates Y by an
adjusted estimator, not by the sample mean itself. We consider only the case when
n is an odd number (n > 3) and k is an even number, because the method is defined
and has a practical meaning in this case.

Consider again the case of N = 20, n = 5 and k = 4. Either C}, or Cj is selected
with respective proba.blhty 1/2. We notice that the sums of the numbers assigned
to the units in C, and Cj are 52 and 53, respectively. When a linear trend exists
in the population, it would be desirable to remove such a difference. Qur idea is to
replace y1g or y19 by "14185” according as C’; or C’é is selected. Here, of course, y135
is an imaginary value which does not actually exist.

If C’é is selected, then we can "estimate” y185 by use of y;5 and y13. By the
extrapolation method, y185 is estimated by (1/6)(7y18 — y15). Therefore, by using
this value in place of y13, we can estimate Y by

—k

1
Uy = —5-{1/2 +y7 + Y10+ Y15 + 6(7?!18 —y15)}

= T+ o5 (118 — w1e)
= U 30 Y18 — Yis5)-

Note that gy can also be expressed as

_l [ 1 ! !
Yo =92 + %(y% — Yo4)»

where 24 and 25 subscript to y are two-dimensional.

Suppose now that the selected cluster is Cé. Then we can estimate y;55 by using
Y14 and y19. We now need to use the method of interpolation because 18.5 is between
14 and 19. Using the resultant value in place of 739, we can estimate Y by

T = s+ us+on v oo+ )

= 73— %(919 — Y14)

!

]_ ! !
= Y3— E(ye.s - y34).
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The above method can be generalized as follows. Either one of the two clusters
C;C /2 and C,; /2+1 is selected with respective probability 1/2. The population mean

Y is estimated by y;;/z or y'k*/z 1 according as the selected cluster is C;c Jo OF C;C /2419
where

_I _’ 1 ! 7
U2 =Tk + m(yk/z,n = Yr/2,n—1) (1)
and
x - 1 ! ’
Ur/2+1 = Uk/241 — m(yk/zﬂ,n = Yg/2+1,n-1)- (2)

Let us denote this method and the resultant estimator of Y by CBIE and Jog;5,
respectively. Here " CBIE” represents centered balanced systematic sampling, inter-
polation and extrapolation. Then Yop g is biased for Y and it is clear that Joprg
has bias

— 1 _I _I —_—
B(gopir) = 5k + Yepr) =Y
and mean square error

1 _/* —— __/* —
MSE(gepir) = 5@k - Y)? + @en — V)L

3. Expected mean square error of J.p;z

In this section, the expected mean square error of §op;r is obtained by using
Cochran’s (1946) infinite superpopulation model.

The finite population is regarded as a sample from an infinite superpopulation.
First, as a general case, we set up the model as

y’i=/~"'i+ei (i:1’2""7N)7 (3)

where p; is a function of ¢ and the random error e has properties E(e;) = 0, E(e?) =
0%, E(e;e;) = 0 (i # 7). The operator E denotes the expectation over the infinite
superpopulation.

From now on, with regard to p and e also we will use the same style of notation
as adopted for y. That is,

1 N
L = N;”"’
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B = Birg-nk (0 =1,3,5,---,m) (n : odd),
! 1 n ’
B o= = Z Hij
7=1
—_ ! 1 ! '
Prja = gt _———2n(k ~1) (Brjon — i j2,n—1)s

and so on.

The following theorem is very important in evaluating the efficiency of Fopgg.
The proof of this theorem is omitted here, because the method of the proof is similar
to that used in the proof of Theorem 1 in Kim (1999a).

Theorem 1. Assuming the model expressed as (3), the expected mean square
error of Jopyg for k even and n odd (n > 3) is

_ 1 2 2, o N n, o 1 1 |
E{MSE(Ycpig)} = 3:72(#1 —B)"+ + {(k— V2 + T 1)2}. (4)

Now, let us consider the case when the population has a linear trend, namely,
u; = a + bi, where a and b are constants with b # 0. In other words, the assumed
model is

y=a+bit+e (i=1,2,---,N). (5)

In this case, as a preparatory stage for obtaining E{MSE(g-p;g)} we get the
following formulas :

,u—a+<)(N+1) (6)

pi=at(3) W0+ (2) (-2 =12 (7)
Win = Pirtn-tk = 6 +b{i+ (n— 1)k} (=1,2,-- k) (8)
“;,n—l = Hl—i+(n~1)k = Q + b{l -+ (n - l)k} (2 =12,--., k) (9)

Thus we have
! 1 ' '
Hrjo = Byt T‘S(ﬂkﬁ,n — Brk/2,n-1)

- a+( )(N+1) (10)
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and
_l’.= _I 1 ' !
Brjer1 = Mg — m(ﬂk/2+l,n - Hk/2+1,n-1)
b
— ot (§> (N +1). (11)

Now using (6), (10), (11) and the result of Theorem 1, we obtain the following the-
orem:

Theorem 2. For a population characterized by (5), the expected mean square
error of Yop;p is

o’ N-n o2 1 1
E{MSE(Jcpig)} = v Tie {(k— )2 + TESIE

4. Comparison of efficiency with existing methods

In this section, the efficiency of Jop;p is compared with that of estimators re-
sulting from existing methods. First, let us consider SRS, OSS, MSS, BSS, CSS and
CBSS. Bellhouse and Rao (1975) also discussed on comparisons of the performances
of OSS, MSS, BSS and CSS.

For a population having a linear trend represented by (5), the following were
obtained in Kim (1985) :

2 o2
E{MSE(Fss)} = (%) NV + (k- 1)+ =T (13)

b2 02N —
E{MSE(Joss)} = ( ) (k+1)(k N (14)

b2 o?N —n
E{MSE(gyss)} = E{MSE(ypss)} = (12 2) (k+1)(k—1) t N
(n rodd) (15)

2 n
E{MSE(ycss»—% TR (: even) (16)

} (k :even,n : odd,n > 3)(12)
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_ b? g*N-—n
E{MSE(gcpss)} = 2 + —N (k : even, n:odd) (17)

Here ?SRs,yoss,fl]Mss,yBss, yCSS and YoBss denote the sample mean, which is
used as the estimator of Y, obtained from SRS, 0SS, MSS, BSS, CSS and CBSS,
respectively.

On the basis of formulas (12) through (17), we can arrange the methods un-
der consideration according to the magnitude of the expected mean square er-
ror as the following theorem. For simplicity’s sake, E{MSE(Ycp;z)} is abbre-
viated as "CBIE”, E{MSE(jpss)} as "0SS”, and so on. Thus, for example,
"CBIE < OSS” means that CBIE is more efficient than OSS.

Theorem 3. Let Ay denote (k—1)"2+ (k + 1)~2. For a population having a
linear trend represented by (5), the following hold :
(1) The case of k =2 and n = 3,5,7, - - -

(i) If 0% < 9b%/10, then CBIE < CBSS = MSS = BSS < CSS = 088 -
SRS.

(ii) If 92/10 < 02 < 96%n?/10, then CBSS = MSS = BSS < CBIE < CSS -
0SS < SRS.

(iii) If 96°n%/10 < 0? < 3b?n2(N+1)/10, then CBSS = MSS = BSS < CSS ==
OSS < CBIE < SRS.

(iv) If 3*n?(N + 1)/10 < o2, then CBSS = MSS = BSS < CSS = 0SS <
SRS < CBIE.
(2) The case of k = 4,6,8,---, n=23,5,7,---and n < /(k? — 1)/3

(i) If 0 < b?/ Ay, then CBIE < CBSS < CSS < MSS = BSS < 0SS < SRS.

(ii) If b%/A) < 0% < b?n? /Ay, then CBSS < CBIE < CSS < MSS = BSS <
0SS < SRS.

(iit) If 5*n?/Ax < 0? < B*(k® — 1)/34;, then CBSS < CSS < CBIE < MSS =
BSS < 0SS < SRS.

(iv) If B2(k? — 1)/3Ax < 02 < b?n?(k? — 1)/3 Ay, then CBSS < CSS < MSS =
BSS < CBIE < 0SS < SRS.

(v) If ®n?(k* — 1)/34; < 0% < b®n2(N + 1)(k — 1)/3 Ay, then CBSS < CSS <
MSS =BSS < 0SS < CBIE < SRS.

(vi) If *n%(N + 1)(k — 1)/34;, < 02, then CBSS < CSS < MSS = BSS <
0SS < SRS < CBIE.
(3) The case of k = 4,6,8,---, n=3,5,7,--- and n = /(k? — 1)/3 (for example,
k=26andn=15)

(i) If o2 < b%/Ay, then CBIE < CBSS < CSS = MSS = BSS < 0SS < SRS.

(ii) If b?/Ar < 0% < b?n?/Ay, then CBSS < CBIE < CSS = MSS = BSS <
0SS < SRS.

(iii) If 0*n? /Ay, < 02 < b*n?(k? —1)/3 A, then CBSS < CSS = MSS = BSS <
CBIE < OSS < SRS.

/\
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(iv) If b°n?(k% — 1) /34y < 0® < B*n2(N +1)(k — 1)/3 A, then CBSS < CSS =
MSS = BSS < 0SS < CBIE < SRS.

(v) If &*n?(N + 1)(k — 1)/3Ax < 02, then CBSS < CSS = MSS = BSS <
0SS < SRS < CBIE.
(4) The case of k = 4,6,8,---,n =3,5,7,--- and n > /(K2 — 1)/3

(i) If 6® < 8% /A, then CBIE < CBSS < MSS = BSS < CSS < 0SS < SRS.

(i) If 8%/Ax < 02 < (k% — 1)/3As, then CBSS < CBIE < MSS = BSS <
CSS < 0OSS < SRS.

(iii) If 6% (k? — 1) /34x < 0? < b*n?/Ay, then CBSS < MSS = BSS < CBIE <
CS5 < 0SS < SRS.

(iv) If b*n? /A < 0 < b?n?(k%—1)/34, then CBSS < MSS = BSS < CSS <
CBIE < 0SS < SRS.

(v) If ®n?(k? — 1) /3A) < 0? < B*n?(N 4+ 1)(k — 1)/3 A, then CBSS < MSS =
BSS < CSS < 0SS <CBIE < SRS.

(vi) If B®*n%(N + 1)(k — 1)/34; < o2, then CBSS < MSS = BSS < CSS <
0SS < SRS < CBIE.

Example. Suppose that we wish to draw a sample of size n = 15 from a
population consisting of N = 300 units. We have k = 300/15 = 20. Assume that
the slope of the linear trend is b = 0.8.

Then, by (4) of Theorem 3, the efficiency of the estimation methods can be
compared as follows :

(i) If 0® < 127.04, then CBIE < CBSS < MSS = BSS < CSS < 0SS <
SRS.

(i) If 127.04 < 02 < 16896.74, then CBSS < CBIE < MSS = BSS < CSS <
OSS < SRS.

(iii) If 16896.74 < o2 < 28584.72, then CBSS < MSS = BSS < CBIE <
CSS < 0SS < SRS.

(iv) If 28584.72 < 0 < 3801767.37, then CBSS < MSS = BSS < CSS <
CBIE < OSS < SRS.

(v) If 3801767.37 < 0? < 54491998.96, then CBSS < MSS = BSS < CSS <
OSS < CBIE < SRS.

(vi) If 54491998.96 < o2, then CBSS < MSS = BSS < CSS < 0SS < SRS <
CBIE.

We can see from this example that CBIE is relatively efficient as compared with
other methods unless ¢? is preposterously large.

Now let us compare CBIE with methods which estimate Y by a weighted mean,
not by the simple mean, of the sample values. The methods and the expected mean
square errors of the resultant estimators are as follows :
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(1) End corrections (EC) (See Yates (1948).)

o?N-n %k -1
E{MSE(@gc)} = 3 6k2((n - 1))2'

(2) Modified systematic sampling with interpolation (MI) (See Kim (1998).)

o’ N-n o2

1
E{MSE(yy;)} = P T + W(4 —12By + 6kCy — P—) (k : even,n : odd,n > 3),
where
k/2
1 1 1 kE+1
B = ;2k+1—2i_§{¢(k+§)_¢( 2 )}
k/2
1 1 1 k+1
= —_ =2y )
Cr ;(2k+1—2i)2 4{’/’ (’”2) v (2 )}
Y(x) = Zg;lnl‘(m) (z > 0) : polygamma function

I'z) = / t*le~tdt (z > 0) : gamma function
0

W) = Ly

(3) Balanced systematic sampling with interpolation and extrapolation (BIE)
(See Kim (1999a).)

2 N —
E{MSE(pp)} = =——

2
o
+ 2_712‘(1 — v —2In2+ Dy) (k:even, n:odd, n> 3),
where y = 0.577215--- is the Euler constant, and Dy = £{n?—2¢(" (k+1)}~y(k+1).
(4) Balanced systematic sampling with interpolation (BI) (See Kim (1999b).)

_ o*N-n
E{MSE(p)} = =~

For various k, the values of the second terms of E{MSE(-)}’s for EC, MI, BIE,
BI and CBIE are given in Table 1. Note that the first terms are all the same for
the five methods. Table 1 clearly shows that CBIE is the most efficient of the five
methods, regardless of the value of o2.

2
+ %—2-(1 — 4By, +2kCy) (k:even, n:odd, n > 5).
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5. Concluding remarks

In this paper, a new method was developed for estimating the mean of a popula-
tion which has a linear trend, for the case of k even and n odd (n > 3). The proposed
method, CBIE, consists of selecting a sample of size n by CBSS, and then estimating
the population mean by using the concept of interpolation and extrapolation.

CBIE turned out to be relatively efficient as compared with existing methods if
o2, the variance of the random error term in the infinite superpopulation model, is
not preposterously large. Moreover, it was found to be more efficient than EC, MI,

BIE and BL

Table 1. The values of the second terms of E{M SE(-)}’s for EC, MI, BIE, BI and

CBIE
k EC MI BIE BI CBIE
4 10.15630%/(n — 1)* | 0.10616?/n? | 1.166802/n% | 0.055907%/n% | 0.037802 /n?
8 | 0.164106%/(n— 1) | 0.110302/n? | 3.28820%/n% | 0.056602/n% | 0.008202/n?
12 | 0.16550%/(n — 1)? | 0.11110%/n? | 5.55290%/n? | 0.05670%/n? | 0.003502/n2
16 | 0.16600%/(n — 1) | 0.11140%/n? | 7.876502/n? | 0.056802/n? | 0.002002 /n?
20 | 0.166302/(n — 1) | 0.111502 /n? | 10.232402/n? | 0.056802/n% | 0.001302 /n?
oo | 0.166702%/(n — 1)? | 0.111702 /n? ) 0.056902 /n? 0
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