• Title/Summary/Keyword: System of Systems

Search Result 59,500, Processing Time 0.065 seconds

Conceptual model architecture design for power grid stabilization service using distributed resources (분산 자원을 활용한 전력망 안정화 서비스 개념적 모델 아키텍처 설계)

  • Jin Oh Kim;Young Min Kim;Joo Yeoun Lee
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.20 no.spc1
    • /
    • pp.97-107
    • /
    • 2024
  • Efforts to respond to climate change are being made in various ways around the world, and in the energy field, continuous research and pilot projects are underway through new and renewable energy, efficient power grid management, and power grid services. Systems are in place to realize these efforts, and the systems created allow for better effectiveness. When implementing a system, systems engineering methodology helps design a more systematic system and can provide verification accuracy and uniformity through intuitive connectivity. In this paper, the original requirements of the power grid stabilization system and the architecture of the system's essential constraints are constructed as a conceptual model and the boundaries and flows between components are defined. By utilizing distributed resources such as EV(Electric Vehicle) and ESS(Energy Storage System) in the power service platform system, we plan to design and build a next-generation power service system that can participate in the power stabilization market and implement a system necessary to respond to climate change in the future.

Development Process of Systems Engineering Management Plan(SEMP) for Large-Scale Complex System Programs (대형 복합 시스템 개발을 위한 효과적인 시스템공학 관리계획 개발 프로세스)

  • 유일상;박영원
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.26 no.4
    • /
    • pp.82-90
    • /
    • 2003
  • The Systems Engineering, as a methodology for engineering and management of today's ever-growing complex system, is a comprehensive and iterative problem-solving process. The process centers on the analysis and management of the stakeholders' needs throughout the entire life-cycle of a system and searches for an optimized system architecture. There are many essential needs and requirements to be met when a system development task is carried out. Systems Engineering Management Plan(SEMP), as a specification for system development process, must be established to satisfy constraints and requirements of stakeholders successfully and to prevent cost overrun and schedule delay. SEMP defines technical management functions and comprehensive plans for managing and controlling the entire system development process, specialty engineering processes, etc. Especially. in the case of a large-scale complex system development program where various disciplinary engineering such as mechanical; electrical; electronics; control; telecommunication; material; civil engineering etc. must be synthesized, it Is essential to develop SEMP to ensure systematic and continuous process improvements for quality and to prevent cost/schedule overruns. This study will enable the process knowledge management on the subject of SEMP as a core systems engineering management effort, that is, definitely defining and continuously managing specification of development process about requirements, functions, and process realization of it using a computer-aided systems engineering software. The paper suggests a systematic SEMP development process and demonstrates a data model and schema for computer-aided systems engineering software, RDD-100, for use in the development and management of SEMP. These are being applied to the systems engineering technology development task for the next-generation high-speed railway systems in progress.

A Study on Chaining Threat Analysis of Cybersecurity against Reactor Protection Systems (원자로보호계통 사이버보안 연계 위협 분석 연구)

  • Jung, Sungmin;Kim, Taekyung
    • Journal of Korea Society of Digital Industry and Information Management
    • /
    • v.18 no.2
    • /
    • pp.39-48
    • /
    • 2022
  • The application of digital technology to instrumentation and control systems in nuclear power plants has overcome many shortcomings of analog technology, but the threat of cybersecurity has increased. Along with other systems, the reactor protection system also uses digital-based equipment, so responding to cybersecurity threats is essential. We generally determine cybersecurity threats according to the role and function of the system. However, since the instrumentation and control system has various systems linked to each other, it is essential to analyze cybersecurity threats together between the connected systems. In this paper, we analyze the cybersecurity threat of the reactor protection system with the associated facilities. To this end, we quantitatively identified the risk of the reactor protection system by considering safety functions, a communication type, the use of analog or digital-based equipment of the associated systems, and the software vulnerability of the configuration module of the reactor protection system.

Dynamics and GA-Based Stable Control for a Class of Underactuated Mechanical Systems

  • Liu, Diantong;Guo, Weiping;Yi, Jianqiang
    • International Journal of Control, Automation, and Systems
    • /
    • v.6 no.1
    • /
    • pp.35-43
    • /
    • 2008
  • The control of underactuated mechanical system is very complex for the loss of its control inputs. The model of underactuated mechanical systems in a potential field is built with Lagrangian method and its structural properties are analyzed in detail. A genetic algorithm (GA)based stable control approach is proposed for the class of under actuated mechanical systems. The Lyapunov stability theory and system properties are utilized to guarantee the system stability to its equilibrium. The real-valued GA is used to adjust the controller parameters to improve the system performance. This approach is applied to the underactuated double-pendulum-type overhead crane and the simulation results illustrate the complex system dynamics and the validity of the proposed control algorithm.

Economic Design of Automated Spiral Parking System

  • Oh, Yonghui;Sung, Yun Chul;Hwang, Hark
    • Industrial Engineering and Management Systems
    • /
    • v.7 no.2
    • /
    • pp.182-188
    • /
    • 2008
  • Automated parking systems, which automatically park and retrieve vehicles, have been steadily replacing conventional parking systems. The spiral parking system is a type of automated parking systems that has cylindrical parking tower. We develop an economic design model of spiral parking system based on a recursive optimization and simulation procedure in which the dynamic nature of the parking system can be integrated into the mathematical programming model. The optimal values of design parameters are found that gives the minimum total cost while complying with the desired performance of the system.

A Study on the Categorization System and Performance Parameters for the development of the Tube Transportation System's Requirements (튜브운송시스템 요구사항 개발을 위한 분류체계 및 성능변수 추출에 관한 연구)

  • Choi, Yo Chul;Kwon, Huck Bin
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.5 no.2
    • /
    • pp.17-26
    • /
    • 2009
  • This paper is about that case study of the Tube Transportation System that the new transportation system offering passenger and logistic service in a metropolis having plenty of the floating population or between medium-sized cities, and solving large issues like terrible traffic jams and environmental problems etc. in this region. Also it presented that elicitation results of performance parameter and the categorization system of it applying a systematic analysis methodology. By the medium of this paper, It showed that definition, case study, performance parameters, and the categorization system of parameters of a general tube transportation system before developing requirements of a specific tube transportation system. From now on, it will come in pretty handy in systems engineering of activities to establish a concept of a new tube transportation systems and develop requirements.

  • PDF

GripLaunch: a Novel Sensor-Based Mobile User Interface with Touch Sensing Housing

  • Chang, Wook;Park, Joon-Ah;Lee, Hyun-Jeong;Cho, Joon-Kee;Soh, Byung-Seok;Shim, Jung-Hyun;Yang, Gyung-Hye;Cho, Sung-Jung
    • International Journal of Fuzzy Logic and Intelligent Systems
    • /
    • v.6 no.4
    • /
    • pp.304-313
    • /
    • 2006
  • This paper describes a novel way of applying capacitive sensing technology to a mobile user interface. The key idea is to use grip-pattern, which is naturally produced when a user tries to use the mobile device, as a clue to determine an application to be launched. To this end, a capacitive touch sensing system is carefully designed and installed underneath the housing of the mobile device to capture the information of the user's grip-pattern. The captured data is then recognized by dedicated recognition algorithms. The feasibility of the proposed user interface system is thoroughly evaluated with various recognition tests.

Assessing the Success rate of e-Learning Systems Aadoption in Saudi Higher Education Institutions during COVID-19 Pandemic: Student Perspective

  • Aljuhani, Nouf;Matar, Zinah;Alzahrani, Asma;Saeedi, Kawther;Badri, Sahar;Fakieh, Bahjat
    • International Journal of Computer Science & Network Security
    • /
    • v.22 no.3
    • /
    • pp.77-88
    • /
    • 2022
  • In response to the significant COVID-19 outbreak, countries have enforced the use of E-learning systems as an alternative to traditional learning; to contain the virus and minimize the infection rate while maintaining the continuity of the learning experience. However, the effective adoption of E-learning systems requires a well-understanding of critical factors, especially in times of crisis. In this regard, this study intends to assess the success of the E-learning system adoption by Higher Education Institutions (HEIs) during the crisis of COVID-19 by utilizing the Information Systems Success (ISS) model. This study's adopted model consists of nine interdependent dimensions, namely: Technical System Quality, Information Quality, Service Quality, Learner Quality, Perceived Satisfaction, Perceived Usefulness, System Use, Intention to Use, and System Success. An electronic survey was distributed among higher education students from different universities in Saudi Arabia to explore each model's dimension. Structural Equation Modeling (SEM) has been applied via SmartPLS software to test the causal relationships between dimensions. This study's main results revealed that students' Service Quality, Learner Quality, and the Intention to Use by students are essential drives for E-learning System Use during the Covid-19 pandemic. Meanwhile, the Intention to Use the system is significantly influenced by Perceived Satisfaction and Perceived Usefulness dimensions. Further, Perceived Satisfaction, Perceived Usefulness, and System Use are interdependent, and all three have a significant positive impact on E-learning System Success.

A Study on Safety Coordination for a Complex System Comprised of Interoperable Systems Utilizing DoD Architectural Framework (상호운용성을 요구하는 복합시스템 개발에서 DoD 아키텍처 프레임워크를 활용한 안전성 확보에 관한 연구)

  • Kim, Young-Min;Lee, Jae-Chon
    • Journal of the Korea Safety Management & Science
    • /
    • v.15 no.1
    • /
    • pp.1-10
    • /
    • 2013
  • The recent trend in the war fields on the globe may be characterized by the network-centric warfare, which would, in turn, make the concept of weapon systems be changed. To this end, the concept of system of systems (SoS) has been introduced in literature. An SoS is a collection of multiple systems, each of which is an independent system and can be interoperable with each other. Thus, in defense domain each SoS is a big weapon system as a whole operated in actual environment and each element of it is also an independent smaller weapon system, but they should be interoperable via network among each other. The safety results studied for each elementary system alone may not be fully applicable to the whole SoS. As such, the objective of this paper is to study how to make the SoS safety requirements be distributed down over the interoperable elementary systems. Since handling the interoperability requires a technique of systems architecture, a standard method called the DoD Architectural Framework (DoDAF) has been used here to derive a solution. Using DoDAF, the safety requirements were first analyzed in the operability environment. The results were then studied to be included in an integrated model of both the systems design and safety processes. A further study of present paper would facilitate ensuring safety in the development of SoS weapon systems in practice.

A Empirical Study about the Influence Factors and Performance Factors of User Satisfaction : Based on National Federation of Fisheries Cooperatives (정보시스템 사용자만족도의 영향요인 및 성과요인에 대한 실증연구 - 수산협동조합 정보사용자 중심으로 -)

  • 박철형;김하균
    • The Journal of Information Systems
    • /
    • v.9 no.1
    • /
    • pp.45-59
    • /
    • 2000
  • This study empirically tests that user satisfactions are influenced by factors focusing on information systems. The findings are as follows; 1. User Participation on information systems influence significantly system reliability, system usage and work environment. 2. Only top management's support on information system influences significantly efficient system usage. 3. Ability of user computing on information system influences significantly system usage.

  • PDF