• Title/Summary/Keyword: System of Linear Equations

Search Result 846, Processing Time 0.028 seconds

Dynamic Constrained Force of Tower Top and Rotor Shaft of Floating Wind Turbine (부유식 해상 풍력 발전기의 Tower Top 및 Rotor Shaft에 작용하는 동적 하중 계산)

  • Ku, Nam-Kug;Roh, Myung-Il;Lee, Kyu-Yeul
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.5
    • /
    • pp.455-463
    • /
    • 2012
  • In this study, we calculate dynamic constrained force of tower top and blade root of a floating offshore wind turbine. The floating offshore wind turbine is multibody system which consists of a floating platform, a tower, a nacelle, and a hub and three blades. All of these parts are regarded as a rigid body with six degree-of-freedom(DOF). The platform and the tower are connected with fixed joint, and the tower, the nacelle, and the hub are successively connected with revolute joint. The hub and three blades are connected with fixed joint. The recursive formulation is adopted for constructing the equations of motion for the floating wind turbine. The non-linear hydrostatic force, the linear hydrodynamic force, the aerodynamic force, the mooring force, and gravitational forces are considered as external forces. The dynamic load at the tower top, rotor shaft, and blade root of the floating wind turbine are simulated in time domain by solving the equations of motion numerically. From the simulation results, the mutual effects of the dynamic response between the each part of the floating wind turbine are discussed and can be used as input data for the structural analysis of the floating offshore wind turbine.

Integral Analysis of the Effects of Non-absorbable gases on the Heat Mass Transfer of Laminar Falling Film

  • Kim, Byong-Joo
    • International Journal of Air-Conditioning and Refrigeration
    • /
    • v.6
    • /
    • pp.56-66
    • /
    • 1998
  • The absorption process of water vapor in a liquid film is an important process in LiBr-Water absorption system. The composition of the gas phase, in which a non-absorbable gas is combined with the absorbate, influences the transport characteristics. In the present work, the absorption processes of water vapor into aqueous solutions of lithium bromide in the presence of non-absorbable gas are investigated. The continuity, momentum, energy and diffusion equations for the solution film and gas are formulated in integral forms and solved numerically. It is found that the mass transfer resistance in gas phase increases with the concentration of non-absorbable gas. However the primary resistance to mass transfer is in the liquid phase. As the concentration of non-absorbable gas in the absorbate increases, the interfacial temperature and concentration of absorbate in solution decrease, which results in the reduction of absorption rate. The reduction of mass transfer rate is found to be significant for the addition of a small amount of non-absorbable gas to the pure vapor, especially at the outlet of tube where the non-absorbable gas accumulates. At higher non-absorbable gas concentration, the decrease of absorption rate seems to be linear to the concentration of non-absorbable gas.

  • PDF

Design of Optimal Controller for TS Fuzzy Models and Its Application to Nonlinear Systems (TS 퍼지 모델을 이용한 최적 제어기 설계 및 비선형 시스템에서의 응용)

  • Chang, Wook;Joo, Young-Hoon;Park, Jin-Bae
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.49 no.2
    • /
    • pp.68-73
    • /
    • 2000
  • This paper addresses the analysis and design of fuzzy control systems for a class of complex nonlinear systems. Firstly, the nonlinear system is represented by Takagi-Sugeno(TS) fuzzy model and the global controller is constructed by compensating each linear model in the rule of TS fuzzy model. The design of conventional TS fuzzy-model-based controller is composed of two processes. One is to determine the static state feedback gain of each local model and the other is to validate the stability of the designed fuzzy controller. In this paper, we propose an alternative methods for the design of TS fuzzy-model-based controller. The design scheme is based on the extension of conventional optimal control theory to the design of TS fuzzy-model-based controller. By using the proposed method, the design and stability analysis of the TS fuzzy model-based controller is reduced to the problem of finding the solution of a set of algebraic Riccati equations. And we use the recently developed interior point method to find the solution of AREs, where AREs are recast as the LMI formulation. A numerical simulation example is given to show the effectiveness and feasibiltiy of the proposed fuzzy controller design method.

  • PDF

Forced vibration of the elastic system consisting of the hollow cylinder and surrounding elastic medium under perfect and imperfect contact

  • Akbarov, Surkay D.;Mehdiyev, Mahir A.
    • Structural Engineering and Mechanics
    • /
    • v.62 no.1
    • /
    • pp.113-123
    • /
    • 2017
  • The bi-material elastic system consisting of the circular hollow cylinder and the infinite elastic medium surrounding this cylinder is considered and it is assumed that on the inner free face of the cylinder a point-located axisymmetric time harmonic force, with respect to the cylinder's axis and which is uniformly distributed in the circumferential direction, acts. The shear-spring type imperfect contact conditions on the interface between the constituents are satisfied. The mathematical formulation of the problem is made within the scope of the exact equations of linear elastodynamics. The focus is on the frequency-response of the interface normal and shear stresses and the influence of the problem parameters, such as the ratio of modulus of elasticity, the ratio of the cylinder thickness to the cylinder radius, and the shear-spring type parameter which characterizes the degree of the contact imperfectness, on these responses. Corresponding numerical results are presented and discussed. In particular, it is established that the character of the influence of the contact imperfection on the frequency response of the interface stresses depends on the values of the vibration frequency of the external forces.

Dynamic properties of a building with viscous dampers in non-proportional arrangement

  • Suarez, Luis E.;Gaviria, Carlos A.
    • Structural Engineering and Mechanics
    • /
    • v.55 no.6
    • /
    • pp.1241-1260
    • /
    • 2015
  • Any rational approach to define the configuration and size of viscous fluid dampers in a structure should be based on the dynamic properties of the system with the dampers. In this paper we propose an alternative representation of the complex eigenvalues of multi degree of freedom systems with dampers to calculate new equivalent natural frequencies. Analytical expressions for the dynamic properties of a two-story building model with a linear viscous damper in the first floor (i.e. with a non-proportional damping matrix) are derived. The formulas permit to obtain the equivalent damping ratios and equivalent natural frequencies for all the modes as a function of the mass, stiffness and damping coefficient for underdamped and overdamped systems. It is shown that the commonly used formula to define the equivalent natural frequency is not applicable for this type of system and for others where the damping matrix is not proportional to the mass matrix, stiffness matrix or both. Moreover, the new expressions for the equivalent natural frequencies expose a novel phenomenon; the use of viscous fluid dampers can modify the vibration frequencies of the structure. The significance of the new equivalent natural frequencies is expounded by means of a simulated free vibration test. The proposed approach may offer a new perspective to study the effect of viscous dampers on the dynamic properties of a structure.

Dynamic Behavioral Prediction of Escherichia coli Using a Visual Programming Environment (비쥬얼 프로그래밍 환경을 이용한 Escherichia coli의 동적 거동 예측)

  • Lee, Sung-Gun;Hwang, Kyu-Suk;Kim, Cheol-Min
    • Proceedings of the Korean Society for Bioinformatics Conference
    • /
    • 2004.11a
    • /
    • pp.39-49
    • /
    • 2004
  • When there is a lack of detailed kinetic information, dFBA(dynamic flux balance analysis) has correctly predicted cellular behavior under given environmental conditions with FBA and different ial equations. However, until now, dFBA has centered on substrate concentration, cell growth, and gene on/off, but a detailed hierarchical structure of a regulatory network has not been taken into account. For this reason, the dFBA has limited the represen tation of interactions between specific regulatory proteins and genes and the whole transcriptional regulation mechanism with environmental change. Moreover, to calculate optimal metabolic flux distribution which maximizes the growth flux and predict the b ehavior of cell system, linear programming package(LINDO) and spreadsheet package(EXCEL) have been used simultaneously. thses two software package have limited in the visual representation of simulation results and it can be difficult for a user to look at the effects of changing inputs to the models. Here, we descirbes the construction of hierarchical regulatory network with defined symbolsand the development of an integrated system that can predict the total control mechanism of regulatory elements (opero ns, genes, effectors, etc.), substrate concentration, growth rate, and optimal flux distribution with time. All programming procedures were accoplished in a visual programming environment (LabVIEW).

  • PDF

Nonlinear Analysis of a Forced Circular Plate with Internal Resonance (내부공진을 가진 원판의 비선형 강제진동해석)

  • 김철홍;이원경
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.16 no.11
    • /
    • pp.2098-2110
    • /
    • 1992
  • An analysis is presented for the combination resonance of a clamped circular plate, which occurs when the frequency of the excitation is near the combination of the natural frequencies, that is, when ohm.=2.0mega./sub 1/+omega./sub 2/. The internal resonance, Omega./sub 3/=omega./sub 1/+2.omega./sub 2/, is considered and its influence on the response is studied. The clamped circular plate experiencing mid-plane stretching is governed by a nonlinear partial differential equation. By using Galerkin's method the governing equation is reduced to a system of nonautonomous ordinary differential equations. The method of multiple scales is used to obtain steady-state responses of the system. Results of numerical investigations show that the increase of the excitation amplitude can reduce the amplitudes of steady-state responses. We can not find this kind of results in linear systems.

Vortex-Induced Vibration of Simple Slender Structure Using Cartesian Mesh (직교격자를 이용한 단순 세장 구조물의 와유기 진동 해석)

  • Han, Myung-Ryoon;Ahn, Hyung-Teak
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.48 no.3
    • /
    • pp.260-266
    • /
    • 2011
  • For long slender offshore structures, such as cables and pipe lines, their interaction with surrounding fluid flow becomes an important issue for global design of ocean systems. We employ a long circular cylinder as a representative case of slender offshore structure. A flexibly mounted cylinder in cross-flow generates complex vortex shedding and results in oscillation of the structure. In this paper, flow behind a circular cylinder at Re=100 is simulated. The vortex shedding pattern and flow induced motion are examined in the cross flow configuration as well as with various yaw-angled configurations. The "Lock-in" phenomenon is also observed when reduced velocity is approximately 4.0. The MAC Grid system, which is the typical grid system for Cartesian mesh and pressure correction methods, are used for solving the incompressible Navier-Stokes equations. Predictor/Corrector method is applied for obtaining a non-linear response of structure at the flexibly mounted. The existance and motion of the body is represented by the immersed boundary technique.

Experimental Evaluation of Q-Parameterization Control for the Imbalance Compensation of Magnetic Bearing Syatem (Q-매개변수화 제어를 이용한 자기축수 시스템의 불평형 보상에 대한 실험적평가)

  • Lee, Jun-Ho;Kim, Hyeon-Gi;Lee, Jeong-Seok;Lee, Gi-Seo
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.48 no.3
    • /
    • pp.278-285
    • /
    • 1999
  • This paper utilizes the method of Q-parameterization control to design a controller which solves the problem of imbalance in magnetic bearing systems. There are two methods to solve this problem using feedback controal. The first method is to compensate for the imbalance forces by generating opposing forces on the bearing surface (imbalance compensation). The second method is to make the rotor rotate around its axis of inertia (automatic balancing);in this case no imbalance forces will be generated. In this paper we deal with only imbalance compensation. The free parameter of the Q-parameterization controller is chosen such that these goals are achieved. After the introduction of a model of the magnetic bearing system, we explain the Q-parameterization controller design of the magnetic bearing system with emphasis on the rejection of sinusoidal disturbance for imbalance compensation design. The design objectives are formulated as a linear equations in the controller free paramete Q. Finally, simulation and experimental results are presented and showed the robustness and effectiveness of the proposed controllers.

  • PDF

Control of a Unicycle Robot using a Non-model based Controller (비 모델 외바퀴 로봇의 제어)

  • An, Jae-Won;Kim, Min-Gyu;Lee, Jangmyung
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.20 no.5
    • /
    • pp.537-542
    • /
    • 2014
  • This paper proposes a control system to keep the balance of a unicycle robot. The robot consists of the disk and wheel, for balancing and driving respectively, and the tile angle is measured and used for balancing by the IMU sensor. A PID controller is designed based on a non-model based algorithm to prove that it is possible to control the unicycle robot without any approximated linear system model such as the sliding mode control algorithm. The PID controller has the advantage that it is simple to design the controller and it does not require an unnecessary complex formula. In this paper, assuming that the pitch and roll axis are dynamically decoupled, each of the two controllers are designed separately. A reaction wheel pendulum method is used for the control of the roll axis, that is, for balancing and an inverted pendulum concept is used for the control of the pitch axis. To confirm the performance of the proposed controllers using MATLAB Simulink, the dynamic equations of the robot are derived.