• Title/Summary/Keyword: System matrix

Search Result 4,710, Processing Time 0.031 seconds

Influence of hydrogel encapsulation during cryopreservation of ovarian tissues and impact of post-thawing in vitro culture systems in a research animal model

  • Thuwanut, Paweena;Comizzoli, Pierre;Pimpin, Alongkorn;Srituravanich, Weerayut;Sereepapong, Wisan;Pruksananonda, Kamthorn;Taweepolcharoen, Charoen;Tuntiviriyapun, Punkavee;Suebthawinkul, Chanakarn;Sirayapiwat, Porntip
    • Clinical and Experimental Reproductive Medicine
    • /
    • v.48 no.2
    • /
    • pp.111-123
    • /
    • 2021
  • Objective: Using domestic cats as a biomedical research model for fertility preservation, the present study aimed to characterize the influences of ovarian tissue encapsulation in biodegradable hydrogel matrix (fibrinogen/thrombin) on resilience to cryopreservation, and static versus non-static culture systems following ovarian tissue encapsulation and cryopreservation on follicle quality. Methods: In experiment I, ovarian tissues (n=21 animals; 567 ovarian fragments) were assigned to controls or hydrogel encapsulation with 5 or 10 mg/mL fibrinogen (5 or 10 FG). Following cryopreservation (slow freezing or vitrification), follicle viability, morphology, density, and key protein phosphorylation were assessed. In experiment II (based on the findings from experiment I), ovarian tissues (n=10 animals; 270 ovarian fragments) were encapsulated with 10 FG, cryopreserved, and in vitro cultured under static or non-static systems for 7 days followed by similar follicle quality assessments. Results: In experiment I, the combination of 10 FG encapsulation/slow freezing led to greater post-thawed follicle quality than in the control group, as shown by follicle viability (66.9%±2.2% vs. 61.5%±3.1%), normal follicle morphology (62.2% ±2.1% vs. 55.2%±3.5%), and the relative band intensity of vascular endothelial growth factor protein phosphorylation (0.58±0.06 vs. 0.42±0.09). Experiment II demonstrated that hydrogel encapsulation promoted follicle survival and maintenance of follicle development regardless of the culture system when compared to fresh controls. Conclusion: These results provide a better understanding of the role of hydrogel encapsulation and culture systems in ovarian tissue cryopreservation and follicle quality outcomes using an animal model, paving the way for optimized approaches to human fertility preservation.

Fabrication and the Electrochemical Characteristics of Petroleum Residue-Based Anode Materials (석유계 잔사유 기반 음극재 제조 및 그 전기화학적 특성)

  • Kim, Daesup;Lim, Chaehun;Kim, Seokjin;Lee, Young-Seak
    • Applied Chemistry for Engineering
    • /
    • v.33 no.5
    • /
    • pp.496-501
    • /
    • 2022
  • In this study, an anode material for lithium secondary batteries was manufactured using petroleum-based residual oil, which is a petroleum refining by-product. Among petroleum-based residual oils, pyrolysis fuel oil (PFO), fluidized catalyst cracking-decant oil (FCC-DO), and vacuum residue (VR) were used as carbon precursors. The physicochemical characteristics of petroleum-based residual oil were confirmed through Matrix-assisted laser desorption/ionization Time-of-Flight (MALDI-TOF) and elemental analysis (EA), and the structural characteristics of anode materials manufactured from residual oil were evaluated using X-ray crystallography (XRD) and Raman spectroscopic techniques. VR was found to contain a wide range of molecular weight distributions and large amounts of impurities compared to PFO and FCC-DO, and PFO and FCC-DO exhibited almost similar physicochemical characteristics. From the XRD analysis results, carbonized PFO and FCC-DO showed similar d002 values. However, it was confirmed that FCC-DO had a more developed layered structure than PFO in Lc (Length of a and c axes in the crystal system) and La values. In addition, FCC-DO showed the best cycle characteristics in electrochemical characteristics evaluation. According to the physicochemical and electrochemical results of the petroleum-based residual oil, FCC-DO is a better carbon precursor for a lithium secondary battery than PFO and VR.

Smart Factory Policy Measures for Promoting Manufacturing Innovation (제조혁신 촉진을 위한 스마트공장 정책방안)

  • Park, Jaesung James;Kang, Jae Won
    • Korean small business review
    • /
    • v.42 no.2
    • /
    • pp.117-137
    • /
    • 2020
  • We examine the current status of smart factory deployment and diffusion programs in Korea, and seek to promote manufacturing innovation from the perspective of SMEs. The main conclusions of this paper are as follows. First, without additional market creation and supply chain improvement, smart factories are unlikely to raise profitability leading to overinvestment. Second, new business models need to connect "manufacturing process efficiency" with "R&D" and "marketing" in value chain in smart factories. Third, when introducing smart factories, we need to focus on the areas where process-embedded technology is directly linked to corporate competitiveness. Based on the modularity-maturity matrix (Pisano and Shih, 2012) and the examples of U.S. Manufacturing Innovation Institute (MII), we establish the new smart factory deployment policy measures as follows. First, we shift our smart factory strategy from quantitative expansion to qualitative upgrading. Second, we promote by each sector the formation of industrial commons that help SMEs to jointly develop R&D, exchange standardized data and practices, and facilitate supplier-led procurement system. Third, to implement new technology and business models, we encourage partnerships, collaborations, and M&As between conventional SMEs and start-ups and business ventures. Fourth, the whole deployment process of smart factories is indexed in detail to identify the problems and provide appropriate solutions.

Analysis of the Optimal Window Size of Hampel Filter for Calibration of Real-time Water Level in Agricultural Reservoirs (농업용저수지의 실시간 수위 보정을 위한 Hampel Filter의 최적 Window Size 분석)

  • Joo, Dong-Hyuk;Na, Ra;Kim, Ha-Young;Choi, Gyu-Hoon;Kwon, Jae-Hwan;Yoo, Seung-Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.3
    • /
    • pp.9-24
    • /
    • 2022
  • Currently, a vast amount of hydrologic data is accumulated in real-time through automatic water level measuring instruments in agricultural reservoirs. At the same time, false and missing data points are also increasing. The applicability and reliability of quality control of hydrological data must be secured for efficient agricultural water management through calculation of water supply and disaster management. Considering the characteristics of irregularities in hydrological data caused by irrigation water usage and rainfall pattern, the Korea Rural Community Corporation is currently applying the Hampel filter as a water level data quality management method. This method uses window size as a key parameter, and if window size is large, distortion of data may occur and if window size is small, many outliers are not removed which reduces the reliability of the corrected data. Thus, selection of the optimal window size for individual reservoir is required. To ensure reliability, we compared and analyzed the RMSE (Root Mean Square Error) and NSE (Nash-Sutcliffe model efficiency coefficient) of the corrected data and the daily water level of the RIMS (Rural Infrastructure Management System) data, and the automatic outlier detection standards used by the Ministry of Environment. To select the optimal window size, we used the classification performance evaluation index of the error matrix and the rainfall data of the irrigation period, showing the optimal values at 3 h. The efficient reservoir automatic calibration technique can reduce manpower and time required for manual calibration, and is expected to improve the reliability of water level data and the value of water resources.

A Study on a Sliding Mode Control Algorithm for Dynamic Positioning System of a Vessel (선박의 동적위치유지 시스템을 위한 Sliding Mode 제어 연구)

  • Young-Shik Kim;Jang-Pyo Hong
    • Journal of Navigation and Port Research
    • /
    • v.47 no.4
    • /
    • pp.256-270
    • /
    • 2023
  • In this study, a sliding mode (SM) controller for dynamic positioning (DP) was specifically designed for a turret connection operation of a ship or an offshore structure in which an arbitrary point on the structure could be controlled as the motion center instead of the center of mass. The SM controller allows control of the arbitrary point and provides capability to manage uncertainties in the dynamics of ships and offshore structures, external forces caused by unknown changing marine environments, and transient performance of DP systems. The Jacobian matrix included in kinematic equations of the controlled object was modified to design the SM controller to control based on an arbitrary point of ships or offshore structures. To ensure robustness of the controller, the Lyapunov stability theory was applied in the design of the SM controller. In general, for robustness in DP control, gain scheduling based on a proportional-derivative (PD) control algorithm is employed. However, finding appropriate gains for gain scheduling complicates the application of DP systems. Therefore, in this study, the SM control algorithm was considered to mitigate the complexity of the DP controller for ships and offshore structures. To validate the proposed SM control algorithm, time-domain simulations were conducted and utilized to evaluate the performance of the control algorithm. The effectiveness of the proposed SM controller was assessed by comparing simulation results with results of a conventional PD control algorithm applied in DP control.

Antirapakivi Mantled Feldspar of the Albong Trachyandesite from Ulleung Island, Korea (울릉도 알봉조면안산암에서 산출되는 안티라파키비조직 장석의 성분)

  • Sung-Hyo Yun
    • Journal of the Korean earth science society
    • /
    • v.43 no.6
    • /
    • pp.737-748
    • /
    • 2022
  • In this study, the composition of feldspar phenocrysts observed in the Ulleungdo Albong trachyandesite lava dome was identified by performing point and X-ray element mapping surface analysis (EPMA). Plagioclase, which appears as a phenocryst in the Albong trachyandesite, corresponds to bytownite and labradorite, and andesine, and lath in the microphenocrysts and the matrix corresponds to andesine to oligoclase. Alkali feldspar mantled around plagioclase phenocrysts and microphenocrysts correspond to anorthoclase and sanidine. Plagioclase phenocrysts with a distinct zonal structure represent a normal structure in which the An content of the zoning decreases from bytownite to labradorite or andesine as it moves from the center of the phenocrysts to the edge. The edge of the phenocryst is surrounded by alkali feldspar, showing an antirapakivi texture. X-ray mapping of feldspar phenocrysts showed a typical antirapakivi texture. Normal zoning with distinct zoning showing a difference in component composition was clearly shown. The edges were mantled with alkali feldspar, and antirapakivi represents the texture. The antirapakivi texture of feldspar in the Albong trachyandesite may have been formed in the mixing system when alkali feldspar crystallized and mantled around plagioclase phenocrysts and microphenocrysts. This is because plagioclase phenocrysts and microphenocrysts in magma that had already crystallized are more mafic than trachyandesite magma.

Preparation and Characterization of ClO2 Self-Releasing Smart Sachet (이산화염소 자체 방출 스마트 샤쉐의 제조 및 특성 연구)

  • Junseok Lee;Hojun Shin;Sadeghi Kambiz;Jongchul Seo
    • KOREAN JOURNAL OF PACKAGING SCIENCE & TECHNOLOGY
    • /
    • v.29 no.1
    • /
    • pp.1-7
    • /
    • 2023
  • Chlorine dioxide (ClO2) is widely used for post-harvest sterilization treatment. However, there are limitations in the retail application of ClO2 due to difficulties in handling, expensive facilities, and safety concerns. Therefore, it is necessary to develop a ClO2 technology that can be easily applied and continuously released for a long period. In this study, a series of ClO2 self-releasing sachets were developed. First, poly(ether-block-amide) (PEBAX) and polyethylene-glycol (PEG) composite films containing different ratios of citric acid (CA) were prepared using the solution casting method. The as-prepared PEBAX/PEG-CA composite films were evaluated using FT-IR, DSC, and TGA to confirm chemical structure and thermal properties. Subsequently, PEBAX/PEG-CA composite films were designed in the form of a sachet and NaClO2 powder was transferred into the sachet to achieve a ClO2 self-releasing system. The ClO2-releasing behavior of the sachet was investigated by measuring the release amount of the gas using UV-vis. The release amount of ClO2 increased with increasing CA contents owing to the existence of higher protons (trigger) in the polymer matrix. Further, ClO2 gas was released for a longer time. Therefore, the as-prepared smart sachet can be tuned according to applications and packaging sizes to serve an optimal sterilization effect.

Guide for Processing of Textured Piezoelectric Ceramics Through the Template Grain Growth Method

  • Temesgen Tadeyos Zate;Jeong-Woo Sun;Nu-Ri Ko;Hye-Lim Yu;Woo-Jin Choi;Jae-Ho Jeon;Wook Jo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.36 no.4
    • /
    • pp.341-350
    • /
    • 2023
  • The templated grain growth (TGG) method has gained significant attention for its ability to produce highly textured piezoelectric ceramics with significantly enhanced performance, making it a promising method for transducer and actuator applications. However, the texturing process using the TGG method requires the optimization of multiple steps, which can be challenging for beginners in this field. Therefore, in this tutorial, we provide an overview of the TGG method mainly based on our previous published works, including its various processing steps such as synthesizing anisotropic-shaped templates with size and size distribution control using the molten salt synthesis technique, tape casting, and identifying key factors for proper alignment of the templates in the target matrix system. Our goal is to provide a resource that can serve as a basic reference for researchers and engineers looking to improve their understanding and utilization of the TGG method for producing textured piezoelectric ceramics.

Performance Evaluation of Loss Functions and Composition Methods of Log-scale Train Data for Supervised Learning of Neural Network (신경 망의 지도 학습을 위한 로그 간격의 학습 자료 구성 방식과 손실 함수의 성능 평가)

  • Donggyu Song;Seheon Ko;Hyomin Lee
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.388-393
    • /
    • 2023
  • The analysis of engineering data using neural network based on supervised learning has been utilized in various engineering fields such as optimization of chemical engineering process, concentration prediction of particulate matter pollution, prediction of thermodynamic phase equilibria, and prediction of physical properties for transport phenomena system. The supervised learning requires training data, and the performance of the supervised learning is affected by the composition and the configurations of the given training data. Among the frequently observed engineering data, the data is given in log-scale such as length of DNA, concentration of analytes, etc. In this study, for widely distributed log-scaled training data of virtual 100×100 images, available loss functions were quantitatively evaluated in terms of (i) confusion matrix, (ii) maximum relative error and (iii) mean relative error. As a result, the loss functions of mean-absolute-percentage-error and mean-squared-logarithmic-error were the optimal functions for the log-scaled training data. Furthermore, we figured out that uniformly selected training data lead to the best prediction performance. The optimal loss functions and method for how to compose training data studied in this work would be applied to engineering problems such as evaluating DNA length, analyzing biomolecules, predicting concentration of colloidal suspension.

A Meshless Method Using the Local Partition of Unity for Modeling of Cohesive Cracks (점성균열 모델을 위한 국부단위분할이 적용된 무요소법)

  • Zi, Goangseup;Jung, Jin-kyu;Kim, Byeong Min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.5A
    • /
    • pp.861-872
    • /
    • 2006
  • The element free Galerkin method is extended by the local partition of unity method to model the cohesive cracks in two dimensional continuum. The shape function of a particle whose domain of influence is completely cut by a crack is enriched by the step enrichment function. If the domain of influence contains a crack tip inside, it is enriched by a branch enrichment function which does not have the LEFM stress singularity. The discrete equations are obtained directly from the standard Galerkin method since the enrichment is only for the displacement field, which satisfies the local partition of unity. Because only particles whose domains of influence are influenced by a crack are enriched, the system matrix is still sparse so that the increase of the computational cost is minimized. The condition for crack growth in dynamic problems is obtained from the material instability; when the acoustic tensor loses the positive definiteness, a cohesive crack is inserted to the point so as to change the continuum to a discontiuum. The crack speed is naturally obtained from the criterion. It is found that this method is more accurate and converges faster than the classical meshless methods which are based on the visibility concept. In this paper, several well-known static and dynamic problems were solved to verify the method.