• Title/Summary/Keyword: System matrix

Search Result 4,710, Processing Time 0.029 seconds

Intelligent Hospital Concept Definition by Implementing Quality Function Deployment And System Requirement Analysis (QFD(Quality Function Deployment)와 시스템 요구분석 기법을 이용한 지능형 병원 시스템 개념 정립)

  • Lee, Jun Ho;Kim, Dae Hong;Jin, Kyung Hoon;Ham, Jae Bok;Lee, Jae Woo
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.2 no.1
    • /
    • pp.24-30
    • /
    • 2006
  • In this study, the design concepts for Intelligent Hospital are derived using the Quality Function Deployment(QFD) and System Requirement Analysis Method. First, requirements for important elements of Intelligent hospital are defined. Second, similar systems are compared and user requirement are refined. Through this process, operational requirement for Intelligent Hospital are defined by combining user requirements and similar systems. To analyze operational requirement, the QFD of the system engineering approach are implemented. Alternative design specifications are constructed by implementing the QFD results by building the Morphological Matrix. Various concepts that satisfy the system requirement are derived. Finally the best design concept are obtained using the Pugh concept selection matrix.

  • PDF

Development of Real-Time Load Flow Program for Korean Energy Management System (한국형 EMS 시스템용 실시간 조류계산 프로그램 개발)

  • Yun, Sang-Yun;Cho, Yoon-Sung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.2
    • /
    • pp.242-247
    • /
    • 2010
  • This paper introduces a real-time load flow program for Korean energy management system(EMS). This study is concentrated on the following aspects. First, we propose the model of the real-time database and power system equipment for the real-time load flow. These models are extracted from the needs of load flow functions and are designed to the application common information. Second, several techniques are applied for the efficient convergence and computational speed. The generation/load mismatch is redistributed using generator participation factors which are separated to the reference bus. For the voltage control, the jacobian matrix is composed with the basic Y matrix elements and the voltage control elements. Through the optimally ordering, jacobian row and column for a column is changed. However all jacobian matrix entries have same order with the Y matrix. The proposed program is tested using the Korea Electric Power Corporation(KEPCO) system. Through the test, we verified that the proposed program can be effectively used to accomplish the Korean EMS system.

Operational modal analysis of reinforced concrete bridges using autoregressive model

  • Park, Kyeongtaek;Kim, Sehwan;Torbol, Marco
    • Smart Structures and Systems
    • /
    • v.17 no.6
    • /
    • pp.1017-1030
    • /
    • 2016
  • This study focuses on the system identification of reinforced concrete bridges using vector autoregressive model (VAR). First, the time series output response from a bridge establishes the autoregressive (AR) models. AR models are one of the most accurate methods for stationary time series. Burg's algorithm estimates the autoregressive coefficients (ARCs) at p-lag by reducing the sum of the forward and the backward errors. The computed ARCs are assembled in the state system matrix and the eigen-system realization algorithm (ERA) computes: the eigenvector matrix that contains the vectors of the mode shapes, and the eigenvalue matrix that contains the associated natural frequencies. By taking advantage of the characteristic of the AR model with ERA (ARMERA), civil engineering can address problems related to damage detection. Operational modal analysis using ARMERA is applied to three experiments. One experiment is coupled with an artificial neural network algorithm and it can detect damage locations and extension. The neural network uses a specific number of ARCs as input and multiple submatrix scaling factors of the structural stiffness matrix as output to represent the damage.

Digital Redesign using the Discrete Grammian Method (연속제어기의 GSHF(Generalized Sampled-data Hold Function)을 이용한 디지탈 재설계시의 이산적 GRAMMIAN 행렬의 사용)

  • Chung, Chi-B.;Chung, Tae-S.;Yang, Won-Y.
    • Proceedings of the KIEE Conference
    • /
    • 1993.07a
    • /
    • pp.306-309
    • /
    • 1993
  • Digital redesign techniques are to derive a digital controller fred the existing continuous controller and its plant so that the performance of the digitally controlled system is matched as closely as possible to that of the original continuous system at the sampling instants. Recently a new digital redesign technique, was developed to use the generalized sampled-data hold function(GSHF) based on the the grammian matrix. With this new technique the digitally redesigned system showed several good features compared with any existing technique in terms of the state match at the sampling instants, the large sampling period, and the transient reponses. This paper concerns a further improvement of the new digital redesign technique by employing the discrete grammian matrix instead of the continuous grammian matrix in defining GSHF. With this modification, it was observed by simulation that the transient response of the modified digital system shows far better performance than the digital system based on the continuous grammian matrix.

  • PDF

A Study on the Risk Assessment for Urban Railway Systems Using an Adaptive Neuro-Fuzzy Inference System(ANFIS) (적응형 뉴로-퍼지(ANFIS)를 이용한 도시철도 시스템 위험도 평가 연구)

  • Tak, Kil Hun;Koo, Jeong Seo
    • Journal of the Korean Society of Safety
    • /
    • v.37 no.1
    • /
    • pp.78-87
    • /
    • 2022
  • In the risk assessment of urban railway systems, a hazard log is created by identifying hazards from accident and failure data. Then, based on a risk matrix, evaluators analyze the frequency and severity of the occurrence of the hazards, conduct the risk assessment, and then establish safety measures for the risk factors prior to risk control. However, because subjective judgments based on the evaluators' experiences affect the risk assessment results, a more objective and automated risk assessment system must be established. In this study, we propose a risk assessment model in which an adaptive neuro-fuzzy inference system (ANFIS), which is combined in artificial neural networks (ANN) and fuzzy inference system (FIS), is applied to the risk assessment of urban railway systems. The newly proposed model is more objective and automated, alleviating the limitations of risk assessments that use a risk matrix. In addition, the reliability of the model was verified by comparing the risk assessment results and risk control priorities between the newly proposed ANFIS-based risk assessment model and the risk assessment using a risk matrix. Results of the comparison indicate that a high level of accuracy was demonstrated in the risk assessment results of the proposed model, and uncertainty and subjectivity were mitigated in the risk control priority.

The Production of Metal Matrix Composites by Using the EPC Process;Particle Behavior at Solid-Liquid Interface (소실모형주조법에 의한 금속기 복합재료의 제조;고액계면과 입자거동에 관하여)

  • Park, Jong-Ik;Kim, Young-Seob;Kim, Jeong-Min;Kim, Dong-Gyu
    • Journal of Korea Foundry Society
    • /
    • v.17 no.1
    • /
    • pp.93-99
    • /
    • 1997
  • A possibility of production of aluminium matrix composites by using the lost foam process was investigated. Silicon carbide particles, graphite particles, and stainless steel wires were used as reinforcement materials. The reinforcement materials were introduced to the polystyrene to form patterns via injection molding process. The results obtained from this experiment can be summarized as follows. In Al/SiCp system, the particles with the radius of $100{\mu}m$ and over were entrapped in the matrix in the case of upward freezing of which solidification direction was opposite to floating direction of the particles. And few particles were entrapped in the matrix in downward freezing. In Al/graphite system, almost no particles were entrapped in the matrix except the area chill attatched. When the thickness of polystyrene slice was 4mm in Al/stainless steel wire system, the floating tendency of fibers was observed to increase as the distance from the ingate was increased.

  • PDF

A Study on the Step Response Model Development of a Dynamic Matrix Control(DMC) For Boiler-Turbine Systems in a Fossil Power Plant (화력발전 보일러-터빈 시스템을 위한 Dynamic Matrix Control(DMC)의 계단응답모델 선정에 관한 연구)

  • Moon, Un-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.20 no.5
    • /
    • pp.125-133
    • /
    • 2006
  • This paper presents comparison results of Step Response Model of Dynamic Matrix Control(DMC) for a drum-type boiler-turbine system of a fossil power plant. Two possible kinds of step response models are investigated in designing the DMC, one is developed with the linearization of theoretical model and the other is developed with the process step-test data. Then, the control performances of each model-based DMC are simulated and evaluated. It is observed that the simulation results with the step-response model based on the test data show satisfactory results, while the linearized model is not suitable for the control of boiler-turbine system.

Analysis and Modeling of Wireless Power Transfer Systems using Magnetically Coupled Resonator Scheme with Relay Coils (릴레이 코일을 포함한 자기 공명 방식 무선 전력 전송 시스템의 분석 및 모델링)

  • Park, Hee-Su;Kwon, Min-Sung;Kim, Min-Ji;Park, Hyeon-Min;Ku, Hyun-Chul
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.28 no.1
    • /
    • pp.69-78
    • /
    • 2014
  • In this paper, characteristics of wireless power transfer (WPT) systems using magnetically coupled resonance scheme with relay coils are investigated and modeled. Especially, asymmetric frequency splitting characteristics in over-coupled region of WPT with relays are measured and accurately modeled. Transmitter, receiver, and relay coils are modeled with R, L, C equivalent circuits. Using these circuit models and mutual inductances between coils, a WPT system is described with a linear matrix equation. For under-coupled region, a matrix is simplified considering only mutual inductances between adjacent coils. An analytical transfer characteristic of WPT system vs. distance is extracted using an inverse matrix that is acquired by Gauss elimination method for the simplified matrix. For over-coupled region, a matrix considering mutual inductances between non-adjacent coils is used to predict a frequency splitting characteristics accurately. A 6.3MHz WPT system with relay coils is implemented and measured. An accuracy of the model is investigated by comparing the output of the model with the measured results.

Relaxed Stability Condition for Affine Fuzzy System Using Fuzzy Lyapunov Function (퍼지 리아푸노프 함수를 이용한 어파인 퍼지 시스템의 완화된 안정도 조건)

  • Kim, Dae-Young;Park, Jin-Bae;Joo, Young-Hoon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.10
    • /
    • pp.1508-1512
    • /
    • 2012
  • This paper presents a relaxed stability condition for continuous-time affine fuzzy system using fuzzy Lyapunov function. In the previous studies, stability conditions for the affine fuzzy system based on quadratic Lyapunov function have a conservativeness. The stability condition is considered by using the fuzzy Lyapunov function, which has membership functions in the traditional Lyapunov function. Based on Lyapunov-stability theory, the stability condition for affine fuzzy system is derived and represented to linear matrix inequalities(LMIs). And slack matrix is added to stability condition for the relaxed stability condition. Finally, simulation example is given to illustrate the merits of the proposed method.