패턴 매칭(Pattern Matching)은 네트워크 침입방지 시스템에서 가장 중요한 부분의 하나며 많은 연산을 필요로 한다. 날로 증가되는 많은 수의 공격 패턴을 다루기 위해, 네트워크 침입방지 시스템에서는 회선 속도로 들어오는 패킷을 처리 할 수 있는 다중 패턴 매칭 방법이 필수적이다. 본 논문에서는 현재 많이 사용되고있는 네트워크 침입방지 및 탐지 시스템인 Snort와 이것의 패턴 매칭 특성을 분석한다. 침입방지 시스템을 위한 패턴 매칭 방법은 다양한 길이를 갖는 많은 수의 패턴과 대소문자 구분 없는 패턴 매칭을 효과적으로 다룰 수 있어야 한다. 또한 여러 개의 입력 문자들을 동시에 처리 할 수 있어야 한다. 본 논문에서 Shift-OR 패턴 매칭 알고리즘에 기반을 둔 다중 패턴 매칭 하드웨어 가속기를 제시하고 여러 가지 가정 하에서 성능 측정을 하였다. 성능 측정에 따르면 제시된 하드웨어 가속기는 현재 Snort에서 사용되는 가장 빠른 소프트웨어 다중 패턴 매칭 보다 80배 이상 빠를 수 있다.
International Journal of Fuzzy Logic and Intelligent Systems
/
제1권1호
/
pp.81-86
/
2001
In this paper, we investigated the modeling of Bank Asset Management System(BAME) based on intelligent agent. To achieve this goal, we introduced several kinds of agents that show intelligent features. BAMS is a user friendly system and adopts fuzzy converting system and fuzzy matching system that returns reasonable similarity matching results. Generation function of the proximity degree is suggested. Fuzzification of investment type categories and feature values are defined, and generation of proximity degree is also derived. An example of bank asset management system is introduced and simulated. Investment type matching utilizing fuzzy measure is tested and it showed quite reasonable similarity matching results.
최근 침입 탐지 시스템에 대한 관심이 증대되고 있다. 침입 탐지 시스템에서 침입 여부 확인을 위하여 패턴매칭 기법이 주로 사용된다. 기존의 패턴매칭 기법들은 다양한 공격 패턴들에 대한 패턴 비교 시간이 많이 소요되는 문제점이 있었다. 본 논문에서는 기존의 패턴매 칭 기법들이 가지고 있는 문제점을 해결하기 위하여 새로운 침입 탐지 시스템을 제안한다. 제안한 시스템은 효율적인 패턴 비교를 위하여 룰 패턴을 분류한다. 분류된 패턴은 매칭을 위하여 정형화된 트리로 구현한다. 그러므로, 본 논문에서 제안한 침입 탐지 시스템 모델은 효율적으로 네트워크 침입 탐지를 수행할 수 있다.
최근 침입 탐지시스템에 대한 관심이 증대되고 있다 침입탐지 시스템에서 침입여부 확인을 위하여 패턴매칭 기법이 주로 사용된다. 기존의 패턴매칭 기법들은 다양한 공격 패턴들에 대한 패턴 비교 시간이 많이 소요되는 문제점이 있었다. 본 논문에서는 기존의 패턴 매칭 기법들이 가지고 있는 문제점을 해결하기 위하여 새로운 침입 탐지 시스템을 제안한다. 제안한 시스템은 효율적인 패턴비교를 위하여 롤 패턴을 분류한다. 분류된 패턴은 매칭을 위하여 정형화된 트리로 구현한다 그러므로, 본 논문에서 제안한 침입탐지 시스템 모델은 효율적으로 네트워크 침입 탐지를 수행 할 수 있다.
Design works consist of essential works and subsidiary works. Essential design works means designing creative ideas and productive ideas, while subsidiary design works means helping essential works those are making data tables and specification sheets, checking CAD data's integrity. Subsidiary design works forms the bulk of the whole design process and affects the time limit of delivery. Therefore we propose the automatic data matching system for CAD data's integrity. Proposed system is automatic system supporting subsidiary design works. The data matching system consists of three parts; 1) automatic generation of data tables 2) supporting module for checking CAD data's integrity between Drawings 3) automatic generation of spec. sheets. Developed system was tested in LCD equipment manufacture company and was found to be useful system.
Objective: Iris pattern recognition system is well developed and practiced in human, however, there is a scarcity of information on application of iris recognition system in animals at the field conditions where the major challenge is to capture a high-quality iris image from a constantly moving non-cooperative animal even when restrained properly. The aim of the study was to validate and identify Black Bengal goat biometrically to improve animal management in its traceability system. Methods: Forty-nine healthy, disease free, 3 months±6 days old female Black Bengal goats were randomly selected at the farmer's field. Eye images were captured from the left eye of an individual goat at 3, 6, 9, and 12 months of age using a specialized camera made for human iris scanning. iGoat software was used for matching the same individual goats at 3, 6, 9, and 12 months of ages. Resnet152V2 deep learning algorithm was further applied on same image sets to predict matching percentages using only captured eye images without extracting their iris features. Results: The matching threshold computed within and between goats was 55%. The accuracies of template matching of goats at 3, 6, 9, and 12 months of ages were recorded as 81.63%, 90.24%, 44.44%, and 16.66%, respectively. As the accuracies of matching the goats at 9 and 12 months of ages were low and below the minimum threshold matching percentage, this process of iris pattern matching was not acceptable. The validation accuracies of resnet152V2 deep learning model were found 82.49%, 92.68%, 77.17%, and 87.76% for identification of goat at 3, 6, 9, and 12 months of ages, respectively after training the model. Conclusion: This study strongly supported that deep learning method using eye images could be used as a signature for biometric identification of an individual goat.
A text-dependent speaker recognition system using a robust matching process is studied. The feature histogram of LPC cepstral coefficients for matching is used. The matching process uses mixture network with penalty scores. Using probability and shape comparison of two feature histograms, similarity values are obtained. The experiment results will be shown to show the effectiveness of the proposed algorithm.
In this paper, an improved method is developed for automatic inspection system using simbology patterns. The developed method uses the two previously developed matching methods the template maching method and the feature matching method. The template matching method is very sensitive to variations of target images such as translation and rotation of objects. On the other hand, the feature matching method doesn't extract proper features in some types of symbology patterns. The proposed method shows the improvement of precision in recognition of defects and flexibility of different types of symbology patterns.
This paper presents two adaptive fingerprint matching methods. First, we experiment an adaptive threshold selection of 1:N matching system in order to raise the reliability of the matching score. Second, we propose a adaptive threshold selection using fitting algorithm for high speed matching. The experiment was conducted on the NITZEN database, which has 5247 samples. Consequently, this paper shows that our suggested method can perform 1.88 times faster matching speed than the bidirectional matching speed. And, we prove that FRR of our suggested method decreases 1.43 % than that of the unidirectional matching.
Data fusion is method to combination data. The purpose of this study is to design and implementation for street fashion information analysis system using data fusion. It can offer variety and actually information because it can fuse image data and survey data for street fashion. Data fusion method exists exact matching method, judgemental matching method, probability matching method, statistical matching method, data linking method, etc. In this study, we use exact matching method. Our system can be visual information analysis of customer's viewpoint because it can analyze both each data and fused data for image data and survey data.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.