• Title/Summary/Keyword: System Reliability Analysis

Search Result 3,518, Processing Time 0.032 seconds

Reliability Based Real-time Slope Stability Assessment

  • Lee, Seung-Rae;Choi, Jung-Chan;Kim, Yun-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.427-435
    • /
    • 2008
  • A reliability based slope stability assessment method is proposed and examined considering the variation of matric suction which is measured by a real time slope monitoring system. Mean value first order reliability method and advanced first order reliability method are used to calculate reliability indices of a slope. The applicability of methods is compared by applying them to the range of matric suctions measured by the real-time monitoring system. Sensitivity analysis is also performed to examine the contribution of random variables to the reliability index of slope. Finally, the proposed method is applied to a model slope. The results show that the reliability index of slope can be used for efficient slope management by quantifying the risk of slope in real time.

  • PDF

Effect of Water Temperature on Generation of Ion Migration (이온 마이그레이션 발생에 대한 수분온도의 영향)

  • Lee Deok Bo;Kim Jung Hyun;Kang Soo Keun;Kim Sang Do;Jang Seok Won;Lim Jae Hoon;Ryu Dong Soo
    • Proceedings of the Korean Reliability Society Conference
    • /
    • 2005.06a
    • /
    • pp.339-348
    • /
    • 2005
  • In evaluation of electronic reliability on the PCB(Printed Circuit Board),electrochemical migration is one of main test objects. The phenomenon of electrochemical migration occurs In the environment of the high humidity and the high temperature under bias through a continuous aqueous electrolyte. In this paper, the generating mechanism of electrochemical migration is investigated by using water drop acceleration test under various waters. The waters used in the water drop test are city water, distilled water and ionic water. It found that the generated velocity o of electrochemical migration depended on the temperature of water and the electrolyte quantity which included in the various waters.

  • PDF

A Reliability Growth Prediction for a One-Shot System Using AMSAA Model (AMSAA 모델을 이용한 일회성 체계의 신뢰도성장 예측)

  • Kim, Myung Soo;Chung, Jae Woo;Lee, Jong Sin
    • Journal of Applied Reliability
    • /
    • v.14 no.4
    • /
    • pp.225-229
    • /
    • 2014
  • A one-shot device is defined as a product, system, weapon, or equipment that can be used only once. After use, the device is destroyed or must undergo extensive rebuild. Determining the reliability of a one-shot device poses a unique challenge to the manufacturers and users due to the destructive nature and costs of the testing. This paper presents a reliability growth prediction for a one-shot system. It is assumed that 1) test duration is discrete(i.e. trials or rounds); 2) trials are statistically independent; 3) the number of failures for a given system configuration is distributed according to a binomial distribution; and 4) the cumulative expected number of failures through any sequence of configurations is given by AMSAA model. When the system development is represented by three configurations and the number of trials and failures during configurations are given, the AMSAA model parameters and reliability at configuration 3 are estimated by using a reliability growth analysis software. Further, if the reliability growth predictions do not meet the target reliability, the sample size of an additional test is determined for achieving the target reliability.

A Study on the Reliability Analysis Methodology of Passenger Door System of Electrical Type (전기식 출입문 시스템의 신뢰도 분석기법에 관한 연구)

  • Kim, Chul Sub;Lee, Hi Sung
    • Journal of the Korean Society of Systems Engineering
    • /
    • v.10 no.1
    • /
    • pp.43-48
    • /
    • 2014
  • The door system for railway vehicles is the critical device directly influences on safety and satisfaction of passengers, Recently, electrical type of passenger door system is widely used for EMU type train instead of pneumatic type of passenger door system. The estimation of MTBF and failure rates for electrical type door system is essential. The manufacturor simply provides intrinsic reliability data for the railway operator. But actual reliability data based on operation and maintenance data is not complying with intrinsic reliability. In this study, operation and failure data associated with electrical door system were analyzed in order to determine actual MTBF and failure data. Intrinsic reliability data and service reliability data were studied to finallize much more practical and reliable actual reliability. Relax 2011 was used to predict intrinsic reliability and 217Plus model was also used to estimate of actual reliability data based on field data. Furthermore, it is necessary to keep studying on reliability prediction methodology and applying it in the field and doing research on improvement of reliability through feedback as well.

SENSITIVITY ANALYSIS IN FUZZY RELIABILITY ANALYSISA

  • Onisawa, Takehisa
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1988.10b
    • /
    • pp.764-769
    • /
    • 1988
  • In this paper the failure possibility and the error possibility are used to represent reliability of a technical component and that of a human operator, respectively. The failure possibility and the error possibility are fuzzy sets on the interval [0,1]. In a man-machine system, reliability of the technical component and that of the human operator are usually affected by many factors, e.g., the environment in which a machine is operated, psychological stress of the human operator, etc. The possibility is derived from not only the failure or the error rate but also estimates of these factors. The fuzzy reasoning plays an important role in the derivation. The reliability analysis is performed by the use of the possibility obtained by the present method. Moreover this paper discusses the sensitivity analysis which evaluates what extent the change of the estimation of each factor has an influence on reliability of a man-machine system. The important factors to be ameliorated are shown through the sensitivity analysis.

  • PDF

Seismic Reliability Evaluation of Electric Power Transmission Systems Considering the Multi-state of Substations (변전소의 다중상태를 고려한 송전시스템의 내진 신뢰성 평가)

  • 고현무;박영준;박원석;조호현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.09a
    • /
    • pp.66-73
    • /
    • 2003
  • The technique for the seismic reliability evaluation of the electric power network is presented. In the previous study, the state of the substations was represented by the bi-state which is classified as failure or survival. However, the hi-state model can result in oversimplified analysis, because substations are worked by the parallel operating system. In this paper, Considering the characteristics of the parallel operating system, the damage of the substation is expressed by the multi-state for the more realistic seismic reliability evaluation. Using Monte-Carlo simulation method, the seismic reliability for Korean 345㎸ electric power network is evaluated. Analysis results show that reliability levels of the network by the multi-state analysis is higher than that by the hi-state analysis and the electric power network in southeastern area of the Korean Peninsular may be vulnerable to earthquakes.

  • PDF

Reliability analysis of slopes stabilised with piles using response surface method

  • Saseendran, Ramanandan;Dodagoudar, G.R.
    • Geomechanics and Engineering
    • /
    • v.21 no.6
    • /
    • pp.513-525
    • /
    • 2020
  • Slopes stabilised with piles are seldom analysed considering uncertainties in the parameters of the pile-slope system. Reliability analysis of the pile-slope system quantifies the degree of uncertainties and evaluates the safety of the system. In the present study, the reliability analysis of a slope stabilised with piles is performed using the first-order reliability method (FORM) based on Hasofer-Lind approach. The implicit performance function associated with the factor of safety (FS) of the slope is approximated using the response surface method. The analyses are carried out considering the design matrices formulated based on both the 2k factorial design augmented with a centre run (2k fact-centred design) and face-centered cube design (FCD). The finite element method is used as the deterministic model to compute the FS of the pile-slope system. Results are compared with the results of the Monte Carlo simulation. It is observed that the optimum location of the row of piles is at the middle of the slope to achieve the maximum FS. The results show that the reliability of the system is not uniform for different pile configurations, even if the system deterministically satisfies the target factor of safety (FSt) criterion. The FSt should be selected judiciously as it is observed that the reliability of the system changes drastically with the FSt level. The results of the 2k fact-centred design and FCD are in good agreement with each other. The procedure of the FCD is computationally costly and hence the use of 2k fact-centred design is recommended, provided the response of the system is sufficiently linear over the factorial space.

A reliability-based criterion of structural performance for structures with linear damping

  • Kovaleva, Agnessa
    • Smart Structures and Systems
    • /
    • v.2 no.4
    • /
    • pp.313-320
    • /
    • 2006
  • The reliability analysis of structures subjected to stochastic loading involves evaluation of time and probability of the system's residence in a reference domain. In this paper, we derive an asymptotic estimate of exit time for multi-degrees-of-freedom structural systems. The system's dynamics is governed by the Lagrangian equations with linear dissipation and fast additive noise. The logarithmic asymptotic of exit time is found explicitly as a sum of two terms dependent on kinetic and potential energy of the system, respectively. As an example, we estimate exit time and an associated structural performance for a rocking structure.

Analysis of the Data Reliability for the Preventive Diagnostic System (예방진단시스템의 데이터 신뢰성 분석)

  • Kweon, Dong-Jin;Chin, Sang-Bum;Kwak, Joo-Sik;Woo, Jung-Wook;Choo, Jin-Boo
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.54 no.2
    • /
    • pp.94-100
    • /
    • 2005
  • Abnormal symptoms on operating conditions of power transformer are monitored by a preventive diagnostic system which prevents the sudden power failure in case of quick progress of abnormal situation. The preventive diagnostic system helps plan the proper maintenance method according to the transformer conditions via accumulated data. KEPCO has adopted the preventive diagnostic system at nine of 345kV substations since 1997. Application techniques of the diagnostic sensors were settled, but diagnostic algorithm and practical use of accumulated data are not yet established. To build up the diagnostic algorithm and effective use of the preventive diagnostic system, the reliability of the data which were accumulated in a server computer is very important. This paper describes the data analysis in the server in order to advance the reliability of the accumulated data of the preventive diagnostic system. The principles and data flows of the diagnostic sensors were analyzed, and the data discrepancy between sensors and server were calibrated.

A Study for Domain Categorization and Estimation of Complexity for Reliability Improvement of Domain Analysis (도메인 분석의 신뢰성 향상을 위한 도메인 분류와 복잡도 측정에 관한 연구)

  • Lee, Eun-Ser
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.5 no.1
    • /
    • pp.1-6
    • /
    • 2016
  • Domain analysis is an important component for reliability of development project. Domain analysis error have an effect in the whole system. As a result, the system reliability will be deteriorated. Therefore, we need a methodology to analyze domain characteristic for a reliable analysis in the domain analysis phase. In this paper, we propose a methodology for domain categorization and estimation of complexity for reliability improvement of domain analysis.