• Title/Summary/Keyword: System Reliability

Search Result 9,318, Processing Time 0.027 seconds

A Study on Increasing the Standby Redundant System Reliability with the Relay of Parallel Structure (병렬구조의 계전기를 갖는 대기중복시스템 신뢰도 향상에 관한 연구)

  • 이규용
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.13 no.22
    • /
    • pp.59-64
    • /
    • 1990
  • This paper is aimed to study the standby redundant system with the relay of parallel structure, by making use of the character of standby system, which reliability is higher than parallel system's if the relay has higher reliability than a certain level. By assigning the low-priced relay to the subsystem, this method increases the relay reliability, optimizes the standby redundant system reliability without violating the restrictions, and consequently reduces the cost.

  • PDF

Statistical Inference of Some Semi-Markov Reliability Models

  • Alwasel, I.A.
    • International Journal of Reliability and Applications
    • /
    • v.9 no.2
    • /
    • pp.167-182
    • /
    • 2008
  • The objective of this paper is to discuss the stochastic analysis and the statistical inference of a three-states semi-Markov reliability model. Using the maximum likelihood procedure, the parameters included in this model are estimated. Based on the assumption that the lifetime and repair time of the system are gener-alized Weibull random variables, the reliability function of this system is obtained. Then, the distribution of the first passage time of this system is derived. Many important special cases are discussed. Finally, the obtained results are compared with those available in the literature.

  • PDF

Bayesian reliability estimation in a stress-strength system

  • Chang, In-Hong;Oh, Soo-Jin
    • Journal of Applied Reliability
    • /
    • v.11 no.2
    • /
    • pp.151-165
    • /
    • 2011
  • We consider the problem of estimating the system reliability using noninformative priors when both stress and strength follow generalized gamma distributions with index, scale, and shape parameters. We first derive group-ordering reference priors using the reparametrization. We next provide the sufficient condition for propriety of posterior distributions and provide marginal posterior distributions under those noninformative priors. Finally, we provide and compare estimated values of the system reliability based on the simulated values of parameter of interest in some special cases.

Reliability Assessment of Traction System of Korean High Speed Train (한국형 고속전철 추진시스템의 신뢰성 평가)

  • 서승일;박춘수;한영재;박태근
    • Proceedings of the KSR Conference
    • /
    • 2003.10a
    • /
    • pp.151-155
    • /
    • 2003
  • In this paper, as the first step to assess and enhance the reliability of Korea High Speed Train, electric traction system is selected and reliability analysis is carried out. The electric traction system is classified into subsystems and functional block diagrams and reliability block diagrams are drawn. Expressions to calculate the reliability are deducted and Mean Kilometer Between Service Failure is calculated using the trial test results on the track. Calculated results show reliability growth of the electric traction system.

  • PDF

Reliability Equivalence Factors of n-components Series System with Non-constant Failure Rates

  • Mustafa, A.
    • International Journal of Reliability and Applications
    • /
    • v.10 no.1
    • /
    • pp.43-57
    • /
    • 2009
  • In this article, we study the reliability equivalence factor of a series system. The failure rates of the system components are functions of time t. we study two cases of non-constat failure rates (i) weibull distribution (ii) linear increasing failure rate distribution. There are two methods are used to improve the given system. Two types of reliability equivalence factors are discussed. Numerical examples are presented to interpret how one can utilize the obtained results.

  • PDF

Reliability Equivalences of a Series System Consists of n Independent and Non-identical Components

  • Sarhan, A.M.;Mustafa, A.
    • International Journal of Reliability and Applications
    • /
    • v.7 no.2
    • /
    • pp.111-125
    • /
    • 2006
  • This paper introduces different vectors of the reliability equivalence factors of a series system consists of n independent and nonidentical components. The failure rates of the system components are assumed to be constant. The reliability function and mean time to failure are used as performances to derive the reliability equivalences of the system. The results presented here generalize those available in the literatures. Numerical study is given to explain how one can utilize the theoretical results obtained.

  • PDF

Reliability evaluation plan of Rocket motor system (고체 추진기관 시스템의 신뢰성 평가 방안)

  • Kwon, Tag-Man;Jung, Ji-Sun;Shim, Hang-Geun;Jang, Ju-Su
    • Journal of Applied Reliability
    • /
    • v.11 no.4
    • /
    • pp.399-407
    • /
    • 2011
  • Reliability evaluation of One-Shot system which flies at speed of Mach must be evaluated as the result of many firing tests. But many firing tests are impossible because of budget deficit. Consequently the reliability prediction which substitutes firing tests is used. The accuracy of reliability prediction is decided according to a quantity of accumulated test data. If the test data is insufficient, the direction of prediction can not be set. So we propose the reliability prediction method which applies MIL-HDBK-217 Plus. MIL-HDBK-217 Plus is described about reliability prediction method without sufficient test data. So we apply MIL-HDBK-217 Plus to the rocket motor system, and we accomplish a modeling and a reliability prediction about the system.

System Reliability Analysis of Rack Storage Facilities (물류보관 랙선반시설물의 시스템신뢰성 해석)

  • Ok, Seung-Yong;Kim, Dong-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.29 no.4
    • /
    • pp.116-122
    • /
    • 2014
  • This study proposes a system reliability analysis of rack storage facilities subjected to forklift colliding events. The proposed system reliability analysis consists of two steps: the first step is to identify dominant failure modes that most contribute to the failure of the whole rack facilities, and the second step is to evaluate the system failure probability. In the first step, dominant failure modes are identified by using a simulation-based selective searching technique where the contribution of a failure mode to the system failure is roughly estimated based on the distance from the origin in the space of the random variables. In the second step, the multi-scale system reliability method is used to compute the system reliability where the first-order reliability method (FORM) is initially used to evaluate the component failure probability (failure probability of one member), and then the probabilities of the identified failure modes and their statistical dependence are evaluated, which is called as the lower-scale reliability analysis. Since the system failure probability is comprised of the probabilities of the failure modes, a higher-scale reliability analysis is performed again based on the results of the lower-scale analyses, and the system failure probability is finally evaluated. The illustrative example demonstrates the results of the system reliability analysis of the rack storage facilities subjected to forklift impact loadings. The numerical efficiency and accuracy of the approach are compared with the Monte Carlo simulations. The results show that the proposed two-step approach is able to provide accurate reliability assessment as well as significant saving of computational time. The results of the identified failure modes additionally let us know the most-critical members and their failure sequence under the complicated configuration of the member connections.

Dominant failure modes identification and structural system reliability analysis for a long-span arch bridge

  • Gao, Xin;Li, Shunlong
    • Structural Engineering and Mechanics
    • /
    • v.63 no.6
    • /
    • pp.799-808
    • /
    • 2017
  • Failure of a redundant long-span bridge is often described by innumerable failure modes, which make the structural system reliability analysis become a computationally intractable work. In this paper, an innovative procedure is proposed to efficiently identify the dominant failure modes and quantify the structural reliability for a long-span bridge system. The procedure is programmed by ANSYS and MATLAB. Considering the correlation between failure paths, a new branch and bound operation criteria is applied to the traditional stage critical strength branch and bound algorithm. Computational effort can be saved by ignoring the redundant failure paths as early as possible. The reliability of dominant failure mode is computed by FORM, since the limit state function of failure mode can be expressed by the final stage critical strength. PNET method and FORM for system are suggested to be the suitable calculation method for the bridge system reliability. By applying the procedure to a CFST arch bridge, the proposed method is demonstrated suitable to the system reliability analysis for long-span bridge structure.

Reliability Assessment of Railway Power System by using Tree Architecture (Tree 구조를 이용한 전철급전시스템의 신뢰도 평가)

  • Cha, Jun-Min;Ku, Bon-Hui
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.1
    • /
    • pp.9-15
    • /
    • 2010
  • As catenary supply electric power directly to the railway system, it is very important to prevent an accident of a catenary for appropriate train operation. This paper proposed the assessment the outage data for "British Catenary Safety Analysis Report" and Korean data to compare the reliability of the railway system. The analyzed data were applied to Event Tree and Fault Tree algorithm to calculate the reliability indices of railway system. Event tree is created and gate results of fault tree analysis are used as the source of event tree probabilities. Fault tree represents the interaction of failures and basic events within a system. Event Tree and Fault Tree analysis result is helpful to assess the reliability to interpreted. The reliability indices can be used to determine the equipment to be replaced for the entire system reliability improvement.