• 제목/요약/키워드: System Nonlinearity

Search Result 864, Processing Time 0.022 seconds

Measurement of Ultrasonic Nonlinearity Parameter of Fused Silica and Al2024-T4 (Fused Silica와 Al2024-T4의 비선형 파라미터 측정)

  • Kang, To;Lee, Taekgyu;Song, Sung-Jin;Kim, Hak-Joon
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.1
    • /
    • pp.14-19
    • /
    • 2013
  • Nonlinearity parameter is an inherent property of materials measuring fundamental acoustic amplitude($A_1$) and second harmonic amplitude($A_2$). However, measurement of $A_1$ and $A_2$ has complex calibration procedure, many researchers prefer to measure relative nonlinearity parameter rather than absolute nonlinearity parameter. But, relative nonlinearity parameter is only detect materials degradation with various degradation samples, it is limited application in determining third order elastic constants of materials. Therefore, in this study, the piezoelectric detection method is adopted to measure absolute nonlinearity parameter due to experimental simplicity compare to capacitive detector. Linearity of measurement system is verified by $A_1^2vsA_2$ plot, and we measured ultrasonic nonlinearity parameters of fused silica and Al2024-T4.

Warning Signal for Limit Cycle Flutter of 2D Airfoil with Pitch Nonlinearity by Critical Slowing Down (비틀림 비선형성을 갖는 2차원 익형의 Critical Slowing Down 을 이용한 Limit Cycle Flutter 예측 인자)

  • Lim, Joosup;Lee, Sang-Wook;Kim, Tae-Uk
    • Journal of the Korean Society for Aviation and Aeronautics
    • /
    • v.21 no.4
    • /
    • pp.47-52
    • /
    • 2013
  • In this paper, limit cycle flutter induced by Hopf bifurcation is studied with nonlinear system analysis approach and observed for the critical slowing down phenomenon. Considering an attractor of the dynamics of a system, when a small perturbation is applied to the system, the dynamics converge toward the attractor at some rate. The critical slowing down means that this recovery rate approaches zero as a parameter of the system varies and the size of the basin of attraction shrinks to nil. Consequently, in the pre-bifurcation regime, the recovery rates decrease as the system approaches the bifurcation. This phenomenon is one of the features used to forecast bifurcation before they actually occur. Therefore, studying the critical slowing down for limit cycle flutter behavior would have potential applicability for forecasting those types of flutter. Herein, modeling and nonlinear system analysis of the 2D airfoil with torsional nonlinearity have been discussed, followed by observation of the critical slowing down phenomenon.

Accuracy improvement of laser interferometer with neural network (신경회로망을 이용한 레이저 간섭계 정밀도 향상)

  • Lee, Woo-Ram;Heo, Gun-Hang;Hong, Min-Suk;Choi, In-Sung;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2006.10c
    • /
    • pp.597-599
    • /
    • 2006
  • In this paper, we propose an artificial intelligence method to compensate the nonlinearity error which occurs in the heterodyne laser interferometer. Some superior properties such as long measurement range, ultra-precise resolution and various system set-up lead the laser interferometer to be a practical displacement measurement apparatus in various industry and research area. In ultra-precise measurement such as nanometer or subnanometer scale, however, the accuracy is limited by the nonlinearity error caused by the optical parts. The feedforward neural network trained by back-propagation with a capacitive sensor as a reference signal minimizes the nonlinearity error and we demonstrate the effectiveness of our proppsed algorithm through some experimental results.

  • PDF

Adaptive Nonlinearity Compensation in Laser Interferometer using Neural Network (신경망 회로를 이용한 레이저 간섭계의 적응형 오차보정)

  • Heo, Gun-Hang;Lee, Woo-Ram;You, Kwan-Ho
    • Proceedings of the KIEE Conference
    • /
    • 2007.04a
    • /
    • pp.86-88
    • /
    • 2007
  • In the semiconductor manufacturing industry, the heterodyne laser interferometer plays as an ultra-precise measurement system. However, the heterodyne laser interferometer has some unwanted nonlinearity error which is caused from frequency-mixing. This is an obstacle to improve the measurement accuracy in nanometer scale. In this paper we propose a compensation algorithm based on RLS(recursive least square) method and artificial intelligence method, which reduce the nonlinearity error in the heterodyne laser interferometer. With the capacitance displacement sensor we get a reference signal which can be transformed into the intensity domain. Using the back-propagation Neural Network method, we train the network to track the reference signal. Through some experiments, we demonstrate the effectiveness of the proposed algorithm in measurement accuracy.

  • PDF

ON NONLINEARITY AND GLOBAL AVALANCHE CHARACTERISTICS OF VECTOR BOOLEAN FUNCTIONS

  • Kim, Wan-Soon;Hwang, Hee-Sung
    • Journal of applied mathematics & informatics
    • /
    • v.16 no.1_2
    • /
    • pp.407-417
    • /
    • 2004
  • It is well known that the nonlinearity of vector Boolean functions F on n-dimensional vector space $GF(2)^n$ to $GF(2)^m$ is bounded above by $2^{n-1} - 2 ^{\frac{n}{2}-1}$. In this paper we derive upper bounds and a lower bound on the nonlinearity of vector Boolean functions in terms of auto-correlations. Strengths and weaknesses of each bounds are examined. Also, we modify the notions of the sum-of-square indicator and absolute indicator for Boolean functions to the case of vector Boolean functions to measure global avalanche characteristics of vector Boolean functions. Using those indicators we compare the global avalanche characteristics of DES (Data Encryption System) and Rijndael.

Combination System Design of 5G Candidate Modulation and Full Duplex Communication for the Spectrum Efficiency Enhancement (스펙트럼 효율 향상을 위한 전이중 통신 방식과 5G 후보 변조기술과의 결합시스템 설계)

  • An, Changyoung;Ryu, Heung-Gyoon
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.27 no.4
    • /
    • pp.369-376
    • /
    • 2016
  • In this paper, we propose and design a SSD(Simultaneous Single band Duplex) system using 5G(Generation) candidate modulations. Especially, we consider HPA(High Power Amplifier) nonlinearity in the proposed system. And then, we evaluate and analyze performance of the proposed system. As simulation results, performance of SSD-OFDM(Orthogonal Frequency Division Multiplexing), SSD-FMC (Universal Filtered Multi-Carrier), and SSD-FBMC(Filter Bank Multi-Carrier) is severely degraded by HPA nonlinearity. However, performance of SSD-OFDM, SSD-UFMC, and SSD-FBMC is similar in the same condition. That is, OFDM, UFMC, and FBMC have a similar PAPR(Peak to Average Power Ratio) characteristic. Finally, we can confirm that the proposed SSD system can not cancel(SI) self-interference effectively by strong HPA nonlinearity. That is, Reducing PAPR is important in order to avoid effect of HPA nonlinearity in the proposed SSD system.

Effects of Nonlinearity on the Performance of Multi-Code CDMA Communication Systems (Multi-Code CDMA 시스템에서의 비선형 전력 증폭기의 영향분석)

  • 권진만;김상우
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.24 no.6A
    • /
    • pp.855-863
    • /
    • 1999
  • Recently a number of multi-rate CDMA systems have been proposed for the third generation mobile communication system. Multi-Code CDMA (MC-CDMA) offers the system construction advantage of being able to use a single-rate receiver. But MC-CDMA suffers from the distortion due to the nonlinearity of the power amplifier. In this paper, we analyze the effect of the nonlinearity on the bit error rate performance of MC-CDMA systems. A polynomial model is used to represent the amplifier amplitude nonlinearities.

  • PDF

Robust Nonlinear Multivariable Control for the Hard Nonlinear System with Structured Uncertainty (구조화된 불확실성을 갖는 하드 비선형 시스템에 대한 강인한 다변수 비선형 제어)

  • 한성익;김종식
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.15 no.12
    • /
    • pp.128-141
    • /
    • 1998
  • We propose the robust nonlinear controller design methodology for the multivariable system which has hard nonlinearities (Coulomb friction, dead-zone, etc) and the structured real parameter uncertainty. The hard nonlinearity can be linearized by the RIDF technique and structured real parameter uncertainty can be modelled as the sense of Peterson-Hollot's quadratic Lyapunov bound. For this system, we apply the robust QLQG/H$_{\infty}$ control and then can obtain four Riccati equations. Because of the system's nonlinearity, however, one Riccati equation contains the nonlinear correction term that is very difficult to solve numerically, In order to treat this problem, using some transformations to Riccati equations, the nonlinear correction term can be eliminated. Then, only two Riccati equations need to design a controller. Finally, the robust nonlinear controller is synthesized via IRIDF techniques. To test this proposed control method, we consider the direct-drive robot manipulator system that has Coulomb frictions and varying inertia.

  • PDF

On the limit cycles of aeroelastic systems with quadratic nonlinearities

  • Chen, Y.M.;Liu, J.K.
    • Structural Engineering and Mechanics
    • /
    • v.30 no.1
    • /
    • pp.67-76
    • /
    • 2008
  • Limit cycle oscillations of a two-dimensional airfoil with quadratic and cubic pitching nonlinearities are investigated. The equivalent stiffness of the pitching stiffness is obtained by combining the linearization and harmonic balance method. With the equivalent stiffness, the equivalent linearization method for nonlinear flutter analysis is generalized to address aeroelastic system with quadratic nonlinearity. Numerical example shows that good approximation of the limit cycle can be obtained by the generalized method. Furthermore, the proposed method is capable of revealing the unsymmetry of the limit cycle; however the ordinary equivalent linearization method fails to do so.

Ultra-Precision Position Control of Piezoelectric Actuator System Using Hysteresis Compensation (히스테리시스 보상을 이용한 압전구동기의 초정밀 위치제어)

  • 홍성룡;이병룡
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.85-88
    • /
    • 2000
  • In this paper, the ultra precision positioning system for piezoelectric actuator using hysteresis compensation has been developed. Piezoelectric actuators exhibit limited accuracy in tracking control due to their hysteresis nonlinearity. The main purpose of the proposed controller is to compensate the hysteresis nonlinearity of the piezoelectric actuator. The controller is composed of a PD, hysteresis compensation and neural network part in parallel manner, at first, the excellent tracking performance of the neural network controller was verified by experiments and was compared with the classical PD controller.

  • PDF