• Title/Summary/Keyword: System Jacobian matrix

Search Result 113, Processing Time 0.024 seconds

Contingency Selection Using Eigen-Sensitivity Analysis for Voltage Stability. (고유치감도 해석에 의한 전압안정도의 상정사고 선택)

  • Song, S.G.;Nam, H.K.;Shim, K.S.;Moon, Y.H.;Choi, H.K.;NamKung, J.Y.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.66-68
    • /
    • 2000
  • The Eigen analysis in large power system provides much useful information that is not got in nose curve. The branch participation factor is not quantitative information and is an indirect method calculating incremental change in branch reactive loss. But the Eigen sensitivity analysis to each mode is direct and provides of quantitative information but this method because of needing much time is used in large power system. In this paper the Hessenberg method is used to obtaining dominant eignvalues and corresponding eigenvectors of Jacobian matrix. Ranking the critical contingencies is done by computing the Eigen sensitivity of each dominant eignvalues for changes of each line. The proposed algorithm is tested on the New England 30-bus system and KEPCO system in the year of 2000, which comprises of 791-bus and 2500-branches.

  • PDF

DIRECT COMPUTATION OF MARGINAL OPERATING CONDITIONS FOR VOLTAGE COLLAPSE

  • Lee, Kyung-Jae;Jung, Tay-Ho
    • Proceedings of the KIEE Conference
    • /
    • 1989.07a
    • /
    • pp.195-201
    • /
    • 1989
  • Voltage collapse is a serious concern to the electirc utility industry. It is common to associate steady-state stability with the ability of the transmission system to transport real power and to associate voltage collapse with the inability to provide reactive power at the necessary locations within the system. An algorithm to directly calculate the critical point of system voltage collapse was presented by the authors. The method (based on the ordinary power flow equations and explicit requirement of singularity of the Jacobian matrix) is basically one degree of freedom with proper load distribution factors. This paper suggests a modified algorithm to increase the degree of freedom, introducing the nonlinear programming technique. The objective function is a distance measure between the present operating point and the closest voltage collapse point. Knowledge of the distance and the most vulnarable bus from the voltage collapse point of view may be used as a useful index for the secure system operation.

  • PDF

The Development of the Transmission Marginal Loss Factors with Consideration of the Reactive Power and its Application to Energy Spot Market (무효전력을 고려한 한계송전손실계수 산정 방법론 개발 및 현물시장에의 적용)

  • 박종배;이기송;신중린;김성수
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.7
    • /
    • pp.429-436
    • /
    • 2003
  • This paper presents a new approach for evaluating the transmission marginal loss factors (MLFs) considering the reactive power. Generally, MLFs are represented as the sensitivity of transmission losses, which is computed from the change of the generation at reference bus by the change of the load at the arbitrary bus-i. The conventional evaluation method for MLFs uses the only H matrix, which is a part of jacobian matrix. Therefore, the MLFs computed by the existing method, don't consider the effect of the reactive power, although the transmission losses are a function of the reactive power as well as the active power. To compensate the limits of the existing method for evaluating MLFs, the power factor at the bus-i is introduced for reflecting the effect of the reactive power in the evaluation method of the MLFs. Also, MLFs calculated by the developed method are applied to energy spot markets to reflect the impacts of reactive power. This method is tested with the sample system with 5-bus, and analyzed how much MLFs have an effect on the bidding/offer price, market clearing price(MCP), and settlement in the competitive energy spot market. This paper compared the results of MLFs calculated by the existing and proposed method for the IEEE 14-bus system, and the KEPCO system.

New Power Flow Calculation Using Improved Genetic Algorithm (개선된 유전 알고리즘을 이용한 새로운 전력조류계산)

  • Chae, Myung-Suck;Lee, Tae-Hyung;Shin, Joong-Rin;Im, Han-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1999.11a
    • /
    • pp.43-51
    • /
    • 1999
  • The power flow calculations(PFc) are the most important and powerful tools in power systems engineering. The conventional power flow problem is solved generally with numerical methods such as Newton-Raphson(NR). The conventional numerical method generally have some convergency problem, which is sensitive to initial value, and numerical stability problem concerned with jacobian matrix inversion. This paper presents a new PFc algorithm based on the improved genetic algorithm (IGA) which can overcome the disadvantages mentioned above. The parameters of GA, with dynamical hierarchy of the coding system, are improved to make GA a practical algorithm in the problem of real system. Some case studies with test bus system also present to show the performance of proposed algorithm. The results of proposed algorithm are compared with the results of PFc obtained using a conventional NR method.

  • PDF

A Workspace Analysis Method of Multi-Legged Walking Robot in the Velocity Domain (다족 보행로봇의 속도작업공간 해석)

  • 이지홍;전봉환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.8 no.6
    • /
    • pp.477-483
    • /
    • 2002
  • This paper deals with a workspace analysis of multi-legged walking robots in velocity domain(velocity workspace analysis). Noting that when robots are holding the same object in multiple cooperating robotic arm system the kinematic structure of the system is basically the same with that of a multi-legged walking robot standing on the ground, we invented a way ot applying the technique for multiple arm system to multi-legged walking robot. An important definition of reaction velocity is made and the bounds of velocities achievable by the moving body with multi-legs is derived from the given bounds on the capabilities of actuators of each legs through Jacobian matrix for given robot configuration. After some assumption of hard-foot-condition is adopted as a contact model between feet of robot and the ground, visualization process for the velocity workspace is proposed. Also, a series of application examples will be presented including continuous walking gaits as well as several different stationary posture of legged walking robots, which validate the usefulness of the proposed technique.

Coordinated Control of the Under Load Tap Changer (ULTC의 협조제어)

  • 이송근
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.52 no.9
    • /
    • pp.500-505
    • /
    • 2003
  • The target of the ULTC(Under Load Tap Changer) control purpose is to minimize the operation number of the tap of the ULTC doing the error voltage which is the difference between the measured bus voltage End the reference bus voltage of the receiving end becomes less than the tolerance limits. The existing ULTC control method controls each ULTC considering only its bus voltage of the receiving end. However, this method did not cons der the coordinated control of the ULTCs of the system. In this paper, I proposed a coordinated control of the ULTC in :he loop power system using the Jacobian matrix. To show the validity of the proposed method, I made simulations for three cases: no action of the ULTC, the control of the ULTC by the existing control method, and the control of the ULTC by the coordinated control among the ULTCs of the system. The simulation result shows that the proposed method has more improvement of the operation of the ULTC than other methods.

A Study on Power System Voltage Stability Analysis by the Direct Lyapunov Function (Luapunov 직접법에 의한 전력계통 전압안정도 해석)

  • 문영현;박능수;이태식
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.43 no.5
    • /
    • pp.693-702
    • /
    • 1994
  • This paper deals with direct voltage stability analysis using a power system energy function. The structure preserved energy function is proposed as an energy function for voltage stability analysis. With the use of the proposed energy function voltage collapse conditions are derived, which yields the exactly same results with the Jacobian matrix approach. The voltage collapse phenomenon is analyzed by several methods, which shows that all of the methods produce the same voltage condition. This study also investigates the voltage collapse dynamics by using the proposed energy function. As a result, it has been found that the voltage collapse can be classified into two categories: static and dynamic instablilties which have quite different behaviors. In addition a new method is presented to calculate the power capacity limit of transmission lines with respect to voltage stability. The proposed method is tested for a 2-bus sample system, which shows the characteristics of voltage collapse phenomenon via the energy function.

Bifurcations in Voltage Stability Analysis (바이퍼케이션 이론을 이용한 전압안정도 해석)

  • Lee, Sang-Ho;Cho, Hong-Shik;Sohn, Kwang-Myoung;Park, Jong-Keun;Lee, Byoung-Ha
    • Proceedings of the KIEE Conference
    • /
    • 1996.07b
    • /
    • pp.838-840
    • /
    • 1996
  • Hopf and saddle-node bifurcation have been recognized as some of the reasons for voltage stability problems in a variety of power system models. Local bifurcations are detected by monitoring the eigenvalues of the current operating point. Therefore, many papers have used the methods using the eigenvalues. However, this paper discusses the bifurcations without calculating the eigenvalues as the system parameters vary In the 3 node system. Instead of calculating the eigenvalues, we use directly the coefficients of characteristic equation of Jacobian matrix. Also, the coefficients are used as stability index.

  • PDF

Application of Levenberg Marquardt Method for Calibration of Unsteady Friction Model for a Pipeline System (관수로 부정류 마찰항 보정을 위한 Levenberg Marquardt 방법의 적용연구)

  • Park, Jo Eun;Kim, Sang Hyun
    • Journal of Korea Water Resources Association
    • /
    • v.46 no.4
    • /
    • pp.389-400
    • /
    • 2013
  • In this study, a conventional pipeline unsteady friction model has been integrated into Levenberg Marquardt method to calibrate friction coefficient in a pipeline system. The method of characteristics has been employed as the modeling platform for the frequency dependant model of unsteady friction. In order to obtain Hessian and Jacobian matrix for optimization, the direct differentiation of pressure to friction factor was calculated and sensitivities to friction for heads and discharges were formulated for implementation to the integration constant in the characteristic method. Using a hypothetical simple pipeline system, time series of pressure, introduced by a sudden valve closure, were obtained for various Reynolds numbers. Convergency in fiction factors were evaluated both in steady and unsteady friction models. The comparison of calibration performance between the proposed method and genetic algorithm indicates that faster and stabler behaviour of Levenberg Marquardt method than those of evolutionary calibration.

Active Control of a Ship Cabin Motion Using 3-DOF Parallel Robots (3자유도 병렬 로붓을 이용한 선실 운동의 능동제어)

  • 배종국;심호석;이재원;주해호
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.21 no.1
    • /
    • pp.116-123
    • /
    • 2004
  • The demand for the stable and comfortable cabin of a high speed passenger ship is increasing. The study on shipboard comfort has been mainly concentrated on the motion control of a whole hull body. In this study, however, a new control system operated by two parallel robots (3RPS, 3SPR) such as the active suspension system of motor vehicle is proposed. The goal of this control is keeping zero velocity of the upper robot (cabin) although the lower robot (ship) is moving by the waves. Jacobian matrix was used to design the controller, From the simulation results, the remarkable reduction of motion of the cabin (upper platform) was observed. The 3SPR parallel robot shows better performance compared to the 3RPS robot.