• Title/Summary/Keyword: System Interruption Cost

Search Result 68, Processing Time 0.028 seconds

Reliability Cost Evaluation of Power Distribution System with Superconducting Fault Current Limiter (초전도 한류기 적용시 배전계통의 신뢰도 비용 평가)

  • Moon, Jong-Fil
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.63 no.4
    • /
    • pp.266-270
    • /
    • 2014
  • In this paper, the effects of superconducting fault current limiter (SFCL) installed in power distribution system on reliability are evaluated and analyzed. The fault current will be decreased in power distribution system with SFCL because of the increased impedance of SFCL. The decreased fault current will improve the voltage drop of the bus of substation. The voltage drop is an important factor of power distribution system reliability. In this paper, improvement of reliability worth is analyzed when SFCLs are installed at the starting point in power distribution system. First, resistor-type SFCL model is used in PSCAD/EMTDC. Next, typical power distribution system is modeled. Finally, when the SFCLs with impedance 0.5 [${\Omega}$] are installed in feeder, power distribution system reliability is evaluated. Also, the improvement effect of reliability worth including the effect of voltage sag is analyzed using customer interruption cost according to whether or not SFCL is installed.

Reliability-Centered Maintenance Model for Maintenance of Electric Power Distribution System Equipment (배전계통 기기 유지보수를 위한 RCM 모델)

  • Moon, Jong-Fil;Shon, Jin-Geun
    • The Transactions of the Korean Institute of Electrical Engineers P
    • /
    • v.58 no.4
    • /
    • pp.410-415
    • /
    • 2009
  • With the implementation of electric power industry reform, the utilities are looking for effective ways to improve the economic efficiency. One area in particular, the equipment maintenance, is being scrutinized for reducing costs while keeping a reasonable level of the reliability in the overall system. Here the conventional RCM requires the tradeoff between the upfront maintenance costs and the potential costs of losing loads. In this paper we describe the issues related to applying so-called the "Reliability-centered Maintenance" (RCM) method in managing electric power distribution equipment. The RCM method is especially useful as it explicitly incorporates the cost-tradeoff of interest, i.e. the upfront maintenance costs and the potential interruption costs, in determining which equipment to be maintained and how often. In comparison, the "Time-based Maintenance" (TBM) method, the traditional method widely used, only takes the lifetime of equipment into consideration. In this paper, the modified Markov model for maintenance is developed. First, the existing Markov model for maintenance is explained and analyzed about transformer and circuit breaker, so on. Second, developed model is introduced and described. This model has two different points compared with existing model: TVFR and nonlinear customer interruption cost (CIC). That is, normal stage at the middle of bathtub curve has not CFR but the gradual increasing failure rate and the unit cost of CIC is increasing as the interruption time is increasing. The results of case studies represent the optimal maintenance interval to maintain the equipment with minimum costs. A numerical example is presented for illustration purposes.

Optimal Operation Scheme and Reliability Index Improvement of Micro Grid Using Energy Storage Systems (에너지 저장장치를 이용한 마이크로 그리드의 최적운영 및 신뢰도 지수 개선)

  • Kim, Kyu-Ho
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.2
    • /
    • pp.205-210
    • /
    • 2014
  • The micro grid considered in this paper consists of a diesel generator, a photovoltaic array, a wind turbine, a fuel cell, and a energy storage system. This paper explains and simulates the micro grid components in terms of accuracy and efficiency of having a system model based on the costs of fuel as well as operation and maintenance. For operational efficiency, the objective function in a diesel generator consists of the fuel cost function similar to the cost functions used for the conventional fossil-fuel generating plants. The wind turbine generator is modeled by the characteristics of variable output. The optimization is aimed at minimizing the cost function of the system while constraining it to meet the customer demand and safety of micro grid. The operating cost in fuel-cell system includes the fuel costs and the efficiency for fuel to generate electric power. To develop the overall system model gives a possibility to minimize of the total cost of micro grid. The application of optimal operation can save the interruption costs as well as the operating costs, and improve reliability index in micro grid.

Evaluation and Analysis of Interruption Cost by Industrial Customer Type (산업용 수용가 종별 정전비용 평가 및 분석)

  • Choi, Sang-Bong;Nam, Ki-Young;Kim, Dae-Kyeong;Jeong, Seong-Hwan;Rhoo, Hee-Seok;Lee, Jae-Duk
    • Proceedings of the KIEE Conference
    • /
    • 2007.07a
    • /
    • pp.435-436
    • /
    • 2007
  • As the power industry moves towards open competition, there has been a call for methodology to evaluate power system reliability by using customer interruption costs. This paper presents an evaluation of interruption costs by industrial customer type in Korea using customer survey methodology. When various research results are examined, the customer damage survey methodology becomes much more generalized. Especially, in the case of industrial customers, it is known that the evaluation by customer damage survey is more useful. Accordingly, this paper selected the customer damage survey method to evaluate interruption costs by industrial customer type in Korea considering interruption and customer characteristics.

  • PDF

A Study on the Reliability Assessment Considering Interruption Cost of Load Characteristics in Distribution Systems (배전계통에서 정전부하 특성비용을 고려한 신뢰도평가 방안에 관한 연구)

  • Rho, Dae-Seok;Kim, Jae-Eon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.9 no.4
    • /
    • pp.899-904
    • /
    • 2008
  • This paper deals with the analytical approach for the reliability assessment in radially operated distribution systems. The approach can estimate the expected reliability performance of distribution systems by a direct assessment of the configuration of the systems using the reliability indexes such as NDP(Non-Delivery Power) and NDE(Non-Delivery Energy). The indexes can consider the number and configuration of the load. but can not consider the characteristics of the load which is the one of the most important factor in the investment cost for the distribution systems. Therefore, this paper presents the new indexes considering the expected interruption cost for the load section and shows the effectiveness by simulating at the model systems.

Assessment of Customer Interruption Cost by Regional Groups for Macro Approach (거시적 방법을 이용한 지역별 정전비용 평가)

  • Park, Choong-Yeul;Huh, Chang-Su
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.19 no.1
    • /
    • pp.124-129
    • /
    • 2005
  • Reliability of electric power supply by power system becomes major issue as the electric power industry is recently being regulated. Also a change of environmental condition related to power supply reliability should be considered in the view of power supplier since the competition between energy-industries is strengthen. In other words, because customers may choose other energy source instead of electric power due to an expensive energy charge, enhancing recklessly the reliability of power supply might not be an essential strategy. So to effectively cope with this problem, it is necessary to perceive the reaction of customers against power supply reliability and interruption cost. This paper evaluates the annual interruption costs of customers by regional groups in Korea using a macro approach to cope with these internal and external environment. That is, the each ratio of customer's interruption costs to price of electric power charge is evaluated for public, service, agricultural, fishery, mining, manufactural, and residential consumption by every cities and provinces.

Reliability Evaluation for Considering the Voltage Quality in Power Distribution Systems (전압품질을 고려한 배전계통의 신뢰도 평가)

  • Yun, Sang-Yun;Kim, Oun-Seok;Bae, Joo-Chun;Kim, Nark-Kyung;Park, Joong-Shin;Kim, Jae-Chul
    • Proceedings of the KIEE Conference
    • /
    • 2000.07a
    • /
    • pp.525-527
    • /
    • 2000
  • This paper presents a reliability evaluation method for considering the voltage quality. The proposed evaluation methods are contained the sustained interruption, momentary interruption and voltage sag. For momentary interruption, evaluation indexes are divided the duration based index and the interruption cost index. For voltage sag, the final result of evaluation method represents the magnitude for customers' risk due to the voltage sag. The proposed method is tested using the RBTS model and a reliability data in KEPCO's system.

  • PDF

A Study on the Optimal Investment Method for Distribution Systems Interconnected with Dispersed Generations (분산전원이 연계된 배전계통의 최적 설비투자 방안에 관한 연구)

  • Rho, Dae-Seok
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.12
    • /
    • pp.2179-2185
    • /
    • 2008
  • This paper deals with the optimal investment method for distribution facilities, based on the analytical approach for the reliability assessment in distribution systems interconnected with new dispersed generations. The existing approach can estimate the expected reliability performance of distribution systems by a direct assessment of the configuration of the systems using the reliability indexes such as NDP(Non-Delivery Power) and NDE(Non-Delivery Energy). The indexes can only consider the number and configuration of the load, but can not consider the characteristics of the load which is the one of the most important factor in the investment cost for the distribution systems. Therefore, this paper presents the new performance indexes for the investment of the distribution facilities considering both the expected interruption cost for the load section and the operation characteristics of dispersed generations. The results from a case study show that the proposed methods can be a practical tool for the voltage management in distribution systems including dispersed sources.

Study on the algorithm for the Reasonable Switch Automation Rate with Customer Interruption Cost and Reliability Evaluation (정전비용과 신뢰도 분석을 통한 분할 개폐기의 적정 자동화율 도출 알고리즘에 관한 연구)

  • Chai, Hui-Seok;Shin, Hee-Sang;Cho, Sung-Min;Moon, Jong-Fil;Kim, Jae-Chul
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.4
    • /
    • pp.467-473
    • /
    • 2013
  • The addition of disconnect switches to a distribution feeder or the replacement of the manual switches with the automatic switches do, in general, increase reliability by decreasing the duration of the outage of many to the customers on the feeder and reducing the outage section. However, the improvement of reliability in power distribution system causes an increase of the investment cost, for example, replacement costs, labor costs, and so on. For this reason - the balance between investment and reliability improvement - many studies about the appropriate level of investment have been conducted. In this paper, we suggest the algorithm for determining the reasonable switch automation rate in the power distribution system. We evaluate the customer interruption cost and reliability for several cases - these cases relate with the switch automation rate - in the domestic metropolitan power distribution system, estimate the effectiveness of changing the manual switch to automatic switch quantitatively. These results can help the determining on the disconnect switch's automation rate.

A Reliability Analysis in LVDC Distribution System Considering Power Quality (전력품질을 고려한 LVDC 배전계통의 신뢰도 분석)

  • Noh, Chul-Ho;Kim, Chung-Mo;Kim, Doo-Ung;Gwon, Gi-Hyeon;Oh, Yun-Sik;Han, Jun;Kim, Chul-Hwan
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.4
    • /
    • pp.54-61
    • /
    • 2015
  • Recently, DC-based power system is being paid attention as the solution for energy efficiency. As the example, HVDC (High Voltage DC) transmission system is utilized in the real power system. On the other hand, researches on LVDC (Low Voltage DC) distribution system, which are including digital loads, are not enough. In this paper, reliability in LVDC distribution system is analyzed according to the specific characteristics such as the arrangement of DC/DC converters and the number of poles. Furthermore, power quality is also taken account of since LVDC distribution system includes multiple sensitive loads and electric power converters. In order to achieve this, LVDC distribution systems are modeled using ElectroMagnetic Transient Program (EMTP) and both the minimal cut-set method and Customer Interruption Cost (CIC) are used in the reliability analysis.