• Title/Summary/Keyword: System Integration Test

Search Result 503, Processing Time 0.027 seconds

Development of Monopropellant Propulsion System for Low Earth Orbit Observation Satellite

  • Lee, Kyun-Ho;Yu, Myoung-Jong;Choi, Joon-Min
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.6 no.1
    • /
    • pp.61-70
    • /
    • 2005
  • The currently developed propulsion system(PS) is composed of propellant tank, valves, thrusters, interconnecting line assembly and thermal hardwares to prevent propellant freezing in the space environment. Comprehensive engineering analyses in the structure, thermal, flow and plume fields are performed to evaluate main design parameters and to verify their suitabilities concurrently at the design phase. The integrated PS has undergone a series of acceptance tests to verify workmanship, performance, and functionality prior to spacecraft level integration. After all the processes of assembly, integration and test are completed, the PS is integrated with the satellite bus system successfully. At present, the severe environmental tests have been carried out to evaluate functionality performances of satellite bus system. This paper summarizes an overall development process of monopropellant propulsion system for the attitude and orbit control of LEO(Low Earth Orbit) observation satellite from the design engineering up to the integration and test.

Accuracy Improvement of Low Cost GPS/INS Integration System for Digital Photologging System

  • Kim, Byung-Guk;Kwon, Jay-Hyoun;Lee, Jong-Ki
    • Korean Journal of Geomatics
    • /
    • v.2 no.2
    • /
    • pp.99-105
    • /
    • 2002
  • The accuracy of the Digital Photologging System, designed for the construction of the road Facility Database, highly depends on the positions and attitudes of the cameras from GPS/INS integration. In this paper, the development of a loosely coupled GPS/INS is presented. The performance of the system is verified through a simulation as well as a real test data processing. Since the IMU used in this study shows large systematic errors, the possible accuracy of the positions and attitudes of this low-performance IMU when combined with precise GPS positions are assigned. Currently, the integrated system shows the positional accuracy better than 5cm in real data processing. Although the accuracy of attitude based on real test could not be assigned at this time, it is expected that better than 0.5 degrees and 1.8 degrees for horizontal and down component are achievable according to the simulation result.

  • PDF

A Reconfigurable Integration Test and Simulation Bed for Engagement Control Using Virtualization (가상화 기반의 재구성 용이한 교전통제 통합시험시뮬레이션 베드)

  • Kilseok Cho;Ohkyun Jeong;Moonhyung Yoon
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.26 no.1
    • /
    • pp.91-101
    • /
    • 2023
  • Modeling and Simulation(M&S) technology has been widely used to solve constraints such as time, space, safety, and cost when we implement the same development and test environments as real warfare environments to develop, test, and evaluate weapon systems for the last several decades. The integration and test environments employed for development and test & evaluation are required to provide Live Virtual Construction(LVC) simulation environments for carrying out requirement analysis, design, integration, test and verification. Additionally, they are needed to provide computing environments which are possible to reconfigure computing resources and software components easily according to test configuration changes, and to run legacy software components independently on specific hardware and software environments. In this paper, an Integration Test and Simulation for Engagement Control(ITSEC) bed using a bare-metal virtualization mechanism is proposed to meet the above test and simulation requirements, and it is applied and implemented for an air missile defense system. The engagement simulation experiment results conducted on air and missile defense environments demonstrate that the proposed bed is a sufficiently cost-effective and feasible solution to reconfigure and expand application software and computing resources in accordance with various integration and test environments.

The AGPS/INS Integrated Navigation System Design Using Triple Difference Technique (삼중 차분 기법을 이용한 AGPS/INS 통합 항법 시스템 설계)

  • 오상헌;박찬식;이상정;황동환
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.9
    • /
    • pp.736-744
    • /
    • 2003
  • The GPS attitude output or carrier phase observables can be effectively utilized to compensate the attitude error of the strapdown inertial navigation system. However, when the integer ambiguity is not correctly resolved and/or a cycle slip occurs, an erroneous GPS output can be obtained. If the erroneous GPS information is directly applied to the AGPS/INS integration system, the performance of the system can be rapidly degraded. This paper proposes an AGPS/INS integration system using the triple difference carrier phase observables. The proposed integration system contains a cycle slip detection algorithm, in which inertial information is combined. Computer simulations and van test were performed to verify the proposed integration system. The results show that the proposed system gives an accurate and reliable navigation solution even when the integer ambiguity is not correct and the cycle slip occurs.

The Study of Optimal Performance Improvement Method for Aircraft of Various Variants within the Same Type (다양한 형상의 동일 기종 항공기에 대한 성능개량 최적 구현 방안 연구)

  • Kim, Youngil;Ahn, Seungbeom;Choi, Myeongseok
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.25 no.3
    • /
    • pp.311-320
    • /
    • 2022
  • In this paper, we studied the optimal method of improving performance for aircraft having various variants within the same type. The study defined configuration of an entire fleet of aircraft being subject to a performance improvement program. And selected the most complicated aircraft configuration among them as a Standard Aircraft for modification by according to the proposed Aircraft Selection Process for developing an optimal Aircraft Performance Improvement Process. Based on the selected the Standard Aircraft, drew a system integration design result and carried out Evaluation Test and obtained Airworthiness Certification. Created the database with the design data of the Standard Aircraft, Evaluation Test, and Airworthiness Certification results, and applied it to variants of aircraft to complete the performance improvement program with optimized schedules and costs. By applying the proposed method to IFF performance improvement program, drew optimal system integration design and completed the program with minimized schedule.

Techniques of Airbreathing Propulsion System Integration Using Small Gas Turbine Engine for Subsonic Cruise Missiles (소형 가스터빈 엔진의 유도탄 체계통합 기술)

  • Jang, Jongyoun;Kim, Joon;Jung, Jaewon;Lim, Jinshik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.3
    • /
    • pp.81-88
    • /
    • 2021
  • An airbreathing propulsion system of a subsonic cruise missile is mainly composed of a small gas turbine engine, air intake and vehicle's fuel tank. The propulsion system integration work started from engine acceptance test is finally closed by ground functional test of the missile's propulsion section, after some modifications of engine's sub-components, development of engine-related onboard systems, interface analyses, and tests. The whole process and stepwise technologies of this system integration work are described herein.

A Study on the CMMI Engineering Process Area Modelling of Test Process (시험업무에 대한 CMMI 공학 프로세스 분야 모델링 연구)

  • Choi, Ju-Ho;Ryu, Chung-Ho;Jang, Young-Sik;Kim, Heung-Bum
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.13 no.2
    • /
    • pp.235-242
    • /
    • 2010
  • DSTC(Defense Systems Test Center) in ADD(Agency for Defense Development) performs a test for various kinds of weapon system. In order to provide accurate test measurement data relating to the weapon system's performance with customer, A reliable test process and an objective analysis of the measurement data are required. DSTC is trying to apply CMMI(Capability Maturity Model Integration) Ver 1.2 in a test process. In this paper, we present the result of CMMI Engineering Process Area Modelling of Test Process.

Development of a Data Bus Analyzer for Avionics Interfaces of Various Types (다종 항공전자 인터페이스를 위한 데이터 버스 분석 장비 개발)

  • Kim, Min-Su
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.9
    • /
    • pp.825-832
    • /
    • 2016
  • This paper describes the development of a data bus analyzer for use in avionics systems integration test. The data bus analyzer is equipped with MIL-STD-1553B, CAN and Ethernet interface cards which is incorporated in a majority of the avionics systems to accommodate a variety of interfaces. It has an individual hardware for a capture engine and a analyzing engine in order to perform the collection and the analysis of the bus data at the same time efficiently. It provides a data display function of the grid, 2-dimensional and 3-dimensional form to increase the data analysis efficiency. Verification of the data bus analyzer was carried out module unit testing and inter-module integration testing on the basis of the test procedures. Verification of interlocking requirement and usefulness of developed equipment was confirmed through an integration test result performed on a system integration laboratory of aircraft which is an actual testing environment.

System Integration Test System Integration Test of Containment Structure of Nuclear Power Plant Using Fiber Optic Sensor (광섬유센서를 이용한 원자력 발전소 격납구조물의)

  • 김기수
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.10a
    • /
    • pp.519-526
    • /
    • 2003
  • In this paper, a Fiber Bragg Grating (FRG) sensor system is described and FBGs are well-suited for long term and extremely severe experiments, where traditional strain gauges fail. In the system, a reflect wave-length measurement method which employs a tunable light source to find out the center wave-length of FBG sensor is used. We apply the FBG system to nuclear energy Power Plant for structural integrity test to measure the displacement of the structure under designed pressure and to check the elasticity of the structure by measuring the residual strain. The system works very well and it is expected that it can be used for a real-time strain. temperature and vibration detector of smart structure.

  • PDF