• Title/Summary/Keyword: System Integration Test

Search Result 504, Processing Time 0.028 seconds

Activities and Planning for KRS Coordinates Maintenance

  • Kang, Hee Won;Cho, Sunglyong;Kim, Heesung;Yun, Youngsun;Lee, ByungSeok
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.11 no.4
    • /
    • pp.327-332
    • /
    • 2022
  • The Korea Augmentation Satellite System (KASS) is the Satellite-Based Augmentation System (SBAS) under development in Korea. KASS navigation service support navigation Safety of Life (SoL) service. KASS signal provides corrections to Global Positioning System (GPS) data received from KASS Reference Stations (KRS) and is broadcast form Geostationary Earth Orbiting (GEO) satellites to KASS users and is used by GPS/SBAS user equipment to improve the accuracy, availability, continuity and integrity of the navigation solution. Seven KRS's collect the satellite data and send them to the KASS Processing Stations (KPS) for the generation of the corrections and the monitoring the integrity. For performing its computation the KPS needs to know accurate and reliable KRS antennas coordinates. These coordinates are provided as configuration parameters to the KPS. This means that the reference frame in which the KPS work is the one represented by the set of coordinates provided as input. Therefore, the activity to maintain the accuracy of the KRS antenna coordinates is necessary, knowing that coordinates can evolve due to earth plates movements or earthquakes. In this paper, we analyzed the geodetic survey results for KRS antenna coordinates from Site Acceptance Test (SAT) #1 in December 2020 to August 2022. In the future, it is expected that these activities and planning for KRS coordinates maintenance will be produced and provided to KASS system operators for KPS configuration updates during the KASS lifetime of 15 years. Through these maintenance activities, it is expected that monitoring and analysis of unpredictable events such as earthquakes and seism will be possible in the future.

Design and Evaluation of Intelligent Helmet Display System (지능형 헬멧시현시스템 설계 및 시험평가)

  • Hwang, Sang-Hyun
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.5
    • /
    • pp.417-428
    • /
    • 2017
  • In this paper, we describe the architectural design, unit component hardware design and core software design(Helmet Pose Tracking Software and Terrain Elevation Data Correction Software) of IHDS(Intelligent Helmet Display System), and describe the results of unit test and integration test. According to the trend of the latest helmet display system, the specifications which includes 3D map display, FLIR(Forward Looking Infra-Red) display, hybrid helmet pose tracking, visor reflection type of binocular optical system, NVC(Night Vision Camera) display, lightweight composite helmet shell were applied to the design. Especially, we proposed unique design concepts such as the automatic correction of altitude error of 3D map data, high precision image registration, multi-color lighting optical system, transmissive image emitting surface using diffraction optical element, tracking camera minimizing latency time of helmet pose estimation and air pockets for helmet fixation on head. After completing the prototype of all system components, unit tests and system integration tests were performed to verify the functions and performance.

Concrete Strength Prediction System by Maturity Method using RFID (RFID를 활용한 적산온도방식의 콘크리트 강도 추정 시스템 기초 연구)

  • Park, So-Hyun;Oh, Yong-Seok;Song, Jeong-Hwa;Oh, Kun-Soo
    • Proceeding of Spring/Autumn Annual Conference of KHA
    • /
    • 2008.04a
    • /
    • pp.399-404
    • /
    • 2008
  • The objective of this study is to develop the predicting method of concrete strength when remove concrete form-work without making cement test piece at construction site. For this purpose, this study catches the Maturity Method by using RFID, the usability of which is now being emphasized at site, accumulates and record the strength data, which can be gained with the results of existing Maturity Method method that is accompanied with strength estimation study, in database, and finally proposes the system structure which can check the estimated strength by Maturity Method. The merits of this method by using of Maturity Method are as follows; More objective, precise, and rapid decision can be made to the concrete strength and about the maintaining period of concrete form and form support. More efficient control of integrated material management system can be possible. Architectural field example using RFID can be suggested more concretely. RFID applicability can be extended by using DB of material integration management system.

  • PDF

THE BASIC DESIGN AND ANALYSIS OF UNMANNED VEHICLE FOR TH TELE-OPERATION CONTROL (원격주행을 위한 무인 자동차에 관한 기본설계와 성능분석에 관한 연구)

  • 심재흥;윤득선;김민석;김정하
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.139-139
    • /
    • 2000
  • The subject of this paper is the tole operation for unmanned vehicle. The aim is studied in context of motor control system and algorithms for the mid to low level control of tele operation unmanned vehicle described. Modern, vehicle related researches have been implemented about control, chassis, body and safe쇼 but now is to driving comfort, I.T.S. and human factor, etc. As a result of this fact, unmanned vehicle is main research topic over the world but it is still very expensive and unreasonable. A hierarchical approach is studied in context of motor control system and algorithms for the mid to low level control of tele operation unmanned vehicle described. The real time control and monitoring of longitudinal, lateral, Pitching motion is to be solved by system integration and optimization technique. We show the experimental result about fixed brake range test and acceleration test. And all system is to integrated for driving simulator and unmanned vehicle.

  • PDF

Attitude Determination GPS/INS Integrated Navigation System with FDI Algorithm for a UAV

  • Oh Sang Heon;Hwang Dong-Hwan;Park Chansik;Lee Sang Jeong;Kim Se Hwan
    • Journal of Mechanical Science and Technology
    • /
    • v.19 no.8
    • /
    • pp.1529-1543
    • /
    • 2005
  • Recently an unmanned aerial vehicle (UAV) has been widely used for military and civil applications. The role of a navigation system in the UAV is to provide navigation data to the flight control computer (FCC) for guidance and control. Since performance of the FCC is highly reliant on the navigation data, a fault in the navigation system may lead to a disastrous failure of the whole UAV. Therefore, the navigation system should possess a fault detection and isolation (FDI) algorithm. This paper proposes an attitude determination GPS/INS integrated navigation system with an FDI algorithm for a UAV. Hardware for the proposed navigation system has been developed. The developed hardware comprises a commercial inertial measurement unit (IMU) and the integrated navigation package (INP) which includes an attitude determination GPS (ADGPS) receiver and a navigation computer unit (NCU). The navigation algorithm was implemented in a real-time operating system with a multi-tasking structure. To evaluate performance of the proposed navigation system, a flight test has been performed using a small aircraft. The test results show that the proposed navigation system can give accurate navigation results even in a high dynamic environment.

SYSTEM INTEGRATION AND PERFORMANCE TEST OF DREAM ON STSAT-2

  • Kim, Sung-Hyun;Lee, Ho-Jin;Moon, Nam-Won;Wi, Hoon;Seong, Jin-Taek;Lee, Sang-Hyun;Park, Jong-Oh;Sim, Eun-Sup;Zhang, De-Hai;Jian, Jing-Shan;Kim, Yong-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 2007.10a
    • /
    • pp.374-377
    • /
    • 2007
  • Dual-channel Radiometers for Earth and Atmosphere Monitoring (DREAM) was developed as the Korean first spaceborne microwave radiometer for earth remote sensing. It is the main payload of the Science and Technology SATellite-2 (STSAT-2). STSAT-2 will be launched by Korea Space Launch Vehic1e-l (KSLV-1) at NARO Space Center in Korea in 2008. The DREAM is a two-channel, total power microwave radiometers with the center frequencies of 23.8 GHz and 37 GHz. The bandwidths of radiometer are 600 MHz at 23.8 GHz and 1000 MHz at 37 GHz. The integration time is 200 ms and the required sensitivity is less than 0.5 K. In this paper, we summarize the specification and performance of the developed DREAM firstly. And we describe system integration and performance test of DREAM mounted on spacecraft.

  • PDF

Geodetic Survey Campaigns and Maintenance Plan for KASS Reference Station Antenna Coordinates

  • Hwanho, Jeong;Hyunjin, Jang;Youngsun, Yun;ByungSeok, Lee
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.12 no.1
    • /
    • pp.83-89
    • /
    • 2023
  • The Korea Augmentation Satellite System (KASS) system is a Satellite Based Augmentation System (SBAS) under development to provide APV-I SBAS service in the Republic of Korea. The KASS ground segment generates correction and integrity information for GPS measurements of KASS users using the accurate positions of KASS Reference Station (KRS) antenna phase centers. For this reason, the accuracy of KRS reference points through geodetic survey campaigns is one of the important factors for providing the KASS service in compliance with the required navigation performance. In order to obtain accurate positions, two geodetic survey campaigns were performed at several reference points, such as Mark, Center of Mast at Ground Level (CMGL), and Center of Hole in Top Plate (CHTP), of each KRS site using three different survey methods, the Virtual Reference Station (VRS), Flächen Korrektur Parameter (FKP), and raw data post-processing methods. By comparing and analyzing the results, the computed coordinates of the reference points were verified and Antenna Phase Center (APC) positions were calculated using KRS Antenna Reference Point (ARP) data, and the first KASS Site Acceptance Test (SAT#1) was performed successfully using the verified APC coordinates. After the first site survey activities, the KASS operators should maintain the coordinates with the required performance such that the overall KASS navigation performance commitment is guaranteed during the lifetime of 15 years. Therefore, the maintenance plan for the KRS antenna coordinates should be developed before the commissioning of KASS operation planned after 2023. Therefore, this paper presents a geodetic survey method selected for the maintenance activities and provides the rationale for using this method.

Implementation of AESA Radar Integration Analysis System by using Heterogeneous Media

  • Min-Jung Kang
    • Journal of the Korea Society of Computer and Information
    • /
    • v.29 no.3
    • /
    • pp.117-125
    • /
    • 2024
  • In this paper, implement and propose an Active Electronically Scanned Array (AESA) radar integration analysis system which specialized for radar development by using heterogeneous media. Most analysis systems are used to analyze and improve the cause of defects, so they help the test easier. However, previous log analysis systems that operate only based on text are not intuitive and difficult to find the information user want at once if there is a lot of log information. so when an equipment defect occurs, there are limitations in analyzing the cause of defect. Therefore, the analysis system in this paper utilizes heterogeneous media. The media defined in this paper refers to recording text-based data, displaying data as image or video and visualizing data. The proposed analysis system classifies and stores data that transmitted and received between radar devices, radar target detection and Tracking algorithm data, etc. also displays and visualizes radar operation results and equipment defect information in real time. With this analysis system, it can quickly provide information what user want and assistance in developing high quality radar.

Cycle Slip Detection and Ambiguity Resolution for High Accuracy of an Intergrated GPS/Pseudolite/INS System

  • PARK, Woon-Young;LEE, Hung-Kyu;LEE, Jae-One
    • Korean Journal of Geomatics
    • /
    • v.3 no.2
    • /
    • pp.129-140
    • /
    • 2004
  • This paper addresses solutions th the challenges of carrier phase integer ambiguity resolution and cycle slip detection/identification, for maintaining high accuracy of an integrated GPS/Pseudolite/INS system. Such a hybrid positioning and navigation system is an augmentation of standard GPS/INS systems in localized areas. To achieve the goal of high accuracy, the carrier phase measurements with correctly estimated integer ambiguities must be utilized to update the system integration filter's states. The contribution presents an effective approach to increase the reliability and speed of integer ambiguity resolution through using pseudolite and INS measurements, with special emphasis on reducing the ambiguity search space. In addition, an algorithm which can effectively detect and correct the cycle slips is described as well. The algorithm utilizes additional position information provided by the INS, and applies a statistical technique known as th cumulative-sun (CUSUM) test that is very sensitive to abrupt changes of mean values. Results of simulation studies and field tests indicate that the algorithms are performed pretty well, so that the accuracy and performance of the integrated system can be maintained, even if cycle slips exist in the raw GPS measurements.

  • PDF

Shock Response Analysis of Rotor-Bearing System using the State-Space Newmark Method (상태공간 Newmark 기법을 이용한 로터-베어링 시스템의 충격응답 해석)

  • Lee, An-Sung;Kim, Byung-Ok;Kim, Young-Cheol;Kim, Yeong-Chun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2004.11a
    • /
    • pp.242-247
    • /
    • 2004
  • In this study was proposed a transient response analysis technique of a rotor system, applying the generalized FE modeling method of a rotor-bearing system considering a base-transferred shock force and together the state-space Newmark method of direct time integration scheme based on the average velocity concept. Experiments were performed to a test rig of a mock-up rotor-bearing system with series of half-sine shock waves imposed by an electromagnetic shaker, and quantitative error analyses between analytical and experimental results were carried out. The transient reponses of the rotor were sensitive to duration times and shape-qualities of the shock waves, and overally the analytical results agreed quite well with the experimental ones. Particularly, in cases that the frequencies, $1/(2{\times}duration\;time)$, of the shock waves were close to the critical speed of the rotor-bearing system, resonances occurred and the transient responses of the rotor were amplified.

  • PDF