• Title/Summary/Keyword: System Delay

Search Result 4,464, Processing Time 0.033 seconds

Engine torque and engine/automatic trandmission speed control systems using time delay control (시간지연 제어를 이용한 엔진 토크 및 엔진/자동변속기 속도 제어 시스템)

  • Song, Jae-Bok;Lee, Seung-Man
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.2 no.2
    • /
    • pp.81-87
    • /
    • 1996
  • Time delay control(TDC) law has been recently suggested as an effective control technique for nonlinear time-varying systems with uncertain dynamics and/or unpredictable disturbances. This paper focuses on the applications of the TDC algorithm to torque control of an engine system and speed control of an engine/automatic transmission system. Through the stability analysis of the engien system based on TDC, determination of the appropriate time delay and control factor is investigated. It was revealed that the size of time delay of the TDC law should be greater than that of transport delay of the system for both stability and better control performance. Simulation and experimental results for the engine torque control and engine/automatic transmission speed control systems show both relatively good command following and disturbance rejection properties. However, TDC controller shows rather slow responses when applied to the system with large transport delay.

  • PDF

Stability Analysis of Networked Control System with Time Delay and Data Loss (시간 지연과 데이터 손실을 고려한 네트워크 제어시스템의 안정도 분석)

  • Jung Joonhong;Choi Sooyoung;Park Kiheon
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.10
    • /
    • pp.678-689
    • /
    • 2004
  • The major concern of networked control system is network uncertainties such as time delay and data loss. Because these uncertainties may degrade the performance of networked control system and destabilize the entire system. Therefore, the performance and the stability variation of networked control system due to network uncertainties must be considered first in designing networked control system. In particular, the stability analysis of networked control system is most important issue since time delay and data loss can make the overall systems unstable. In this paper, we present a new stability analysis method of networked control system with time delay and data loss, which is impossible in previous works. The proposed method can determine maximum time delay and allowable transmission rate that preserve stability performance of networked control system. The results of the simulation validate effectiveness of our stability analysis method.

Design of Passivity Tele-Operation System Using Fuzzy Wave Variables (퍼지 웨이브 변수를 이용한 수동성 원격 시스템 설계)

  • Park, Beom-Seok;Yoo, Sung-Goo;Chong, Kil-To
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.3
    • /
    • pp.258-263
    • /
    • 2011
  • In the bilateral tele-operation system, time delay may be a critical problem. Even if system modeling error or time delay occurs, when applied to wave transformation system, the system's stability can be achieved. Using the characteristic b which is an important parameter of wave transformation, the system can display robust performance for time delay. However, since assuming and that the time delay was fixed developing a theory, a stability cannot be guaranteed about the time-varying delay. Therefore, In the paper, Therefore, in this paper, we studied for the method that controls this by applying the fuzzy algorithm which surveyed the timevarying delay characteristics and can adjust the b according to it adaptively.

Active control of a flexible structure with time delay

  • Cai, Guo-Ping;Yang, Simon X.
    • Structural Engineering and Mechanics
    • /
    • v.20 no.2
    • /
    • pp.191-207
    • /
    • 2005
  • Time delay exists inevitably in active control, which may not only degrade the system performance but also render instability to the dynamic system. In this paper, a novel active controller is developed to solve the time delay problem in flexible structures. By using the independent modal space control method, the differential equation of the controlled mode with time delay is obtained from the time-delay system dynamics. Then it is discretized and changed into a first-order difference equation without any explicit time delay by augmenting the state variables. The modal controller is derived based on the augmented system using the discrete variable structure control method. The switching surface is determined by minimizing a discrete quadratic performance index. The modal coordinate is extracted from sensor measurements and the actuator control force is converted from the modal one. Since the time delay is explicitly included throughout the entire controller design without any approximation, the system performance and stability are guaranteed. Numerical simulations show that the proposed controller is feasible and effective in active vibration control of dynamic systems with time delay. If the time delay is not explicitly included in the controller design, instability may occur.

Control of Master-Slave System with Time Delay (시간지연을 가진 매스터-슬래이브 시스템의 제어에 관한 연구)

  • 정원진;최혁렬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.290-294
    • /
    • 1995
  • In master-slave teleoperation system, time delay may be a critical problem because a task is performed over a distance. Even if the system is stable without time delay, time delay can make the system unstable. In this paper a new control scheme applicable to the system with time delay would be proposed,which is based on the conventional position-position feedback type controller. The stability of this control system is proved using scattering theory, and is compared with the conventional ones. By performing the simulation of a one-d.o.f master-slave system, the validity of the proposed algorithm is verified.

  • PDF

Effects of the time delay on the stability of a virtual wall model with a first-order-hold method (시간지연에 의한 일차홀드 방식을 포함하는 가상벽 모델의 안정성 영향 분석)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.4 no.2
    • /
    • pp.17-21
    • /
    • 2014
  • This paper presents the effects of the time delay on the stability of the haptic system that includes a virtual wall and a first-order-hold method. The model of a haptic system includes a haptic device model with a mass and a damper, a virtual wall model, a first-order-hold model and a time delay model. In this paper, the time delay is considered as the computational time delay that is assumed to be as much as the sampling time. As the time delay increases, the maximal available stiffness of a virtual wall model is reduced reversely. The relation among the time delay and the maximum available stiffness, the mass and the damper of the haptic device are analyzed using the MATLAB simulation.

Control of a Flexible Link with Time Delays

  • Choi, Hyoun-Chul;Hong, Suk-Kyo
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1136-1141
    • /
    • 2004
  • This paper presents a control method for time-delay systems and verifies the performance of the designed control system via real experiments. Specifically, the control method is applied to a flexible-link system with time delays. The method combines time- and frequency-domain controllers: linear quadratic optimal controller (or LQR) and lag compensator. The LQR is used to stabilize the system in optimal fashion, whereas the lag compensator is used to compensate time-delay effects by increasing the delay margin of the system. With this methodology, the maximum allowable time delay can be increased significantly. The proposed method is simple but quite practical for time-delay system control as it is based on the conventional loop-shaping method, which gives practical insights on delay-phase relationship. Simulation and experiment results show that the method presented in this paper is feasible and practical.

  • PDF

Analysis for the Stability of a Haptic System with the Computational Time-varying Delay (가변적인 계산시간지연에 의한 햅틱 시스템에서의 안정성 영향 분석)

  • Lee, Kyungno
    • Journal of Institute of Convergence Technology
    • /
    • v.5 no.2
    • /
    • pp.37-42
    • /
    • 2015
  • This paper presents the effects of the computational time-varying delay on the stability of the haptic system that includes a virtual wall and a first-order-hold method. The model of a haptic system includes a haptic device model with a mass and a damper, a virtual wall model, a first-order-hold model and a computational time-varying delay model. In this paper, the maximum of the computational time-varying delay is assumed to be as much as the sampling time. Using the simulation, it is analyzed how the sample-hold methods and the computational time-varying delay affect the maximum available stiffness. As the maximum of computational time-varying delay increases, the maximal available stiffness of a virtual wall model is reduced.

Compensation of Time Delay in Induction Motor Vector Control System Using DQ Transformation (유도전동기 벡터제어 시스템에서 DQ변환을 이용한 시간지연 보상)

  • 최병태;권우현;박철우
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.9 no.12
    • /
    • pp.1001-1008
    • /
    • 2003
  • A time-delay compensation method for vector control system is proposed that can compensate for voltage and current distortions resulting from a time delay in the overall system due to the low pass filter, hysteresis control inverter, microprocessor program computation time, and so on. The proposed scheme estimates the time delay using the difference between the Q-axis stator current command and the time-delayed actual Q-axis stator current in a synchronous reference frame, then compensates the time delay in the voltage and current using the angular displacement of a DQ transformation. Accordingly, the proposed scheme can accurately compensate for the time delay related to the overall system, thereby significantly improving the performance of the vector control system, as verified by simulation and experiment.

End-to-end Delay Analysis and On-line Global Clock Synchronization Algorithm for CAN-based Distributed Control Systems (CAN 기반 분산 제어시스템의 종단 간 지연 시간 분석과 온라인 글로벌 클럭 동기화 알고리즘 개발)

  • Lee, Hee-Bae;Kim, Hong-Ryeol;Kim, Dae-Won
    • Proceedings of the KIEE Conference
    • /
    • 2003.11c
    • /
    • pp.677-680
    • /
    • 2003
  • In this paper, the analysis of practical end-to-end delay in worst case is performed for distributed control system considering the implementation of the system. The control system delay is composed of the delay caused by multi-task scheduling of operating system, the delay caused by network communication, and the delay caused by the asynchronous between them. Through simulation tests based on CAN(Controller Area Network), the proposed end-to-end delay in worst case is validated. Additionally, online clock synchronization algorithm is proposed here for the control system. Through another simulation test, the online algorithm is proved to have better performance than offline one in the view of network bandwidth utilization.

  • PDF