• Title/Summary/Keyword: Synthetic loading

Search Result 121, Processing Time 0.028 seconds

Recovery of Copper from Synthetic Leaching Solution of Manganese Nodule Matte by Solvent Extraction-electrowinning Process (망간단괴 매트상 모의 침출용액으로부터 용매추출-전해채취 공정에 의한 구리의 회수)

  • Kim, Hyun-Ho;Park, Kyung-Ho;Nam, Chul-Woo;Yoon, Ho-Sung;Kim, Min-Seuk;Kim, Chul-Joo;Park, Sang-Woon
    • Resources Recycling
    • /
    • v.25 no.1
    • /
    • pp.60-67
    • /
    • 2016
  • A scale-up test with a continuous solvent extraction and electro-winning system was carried out to separate and recover copper from a synthetic sulfuric acid solution (Cu 10.5 g/L, Co 2.0 g/L, Ni 15.0 g/L, Fe 0.2 g/L). The solution was introduced into mixer-settlers with four stages of extraction and two stages of stripping for continuous countercurrent solvent extraction to separate copper from nickel and cobalt. The loading was carried out using 40% LIX 84-I(v/v) as extractant with a phase ratio of A : O = 1 : 1. Meanwhile, the stripping was undertaken at a phase ratio of A : O = 1 : 1.5 using depleted electrolyte containing 35.0 g/L Cu and 180 g/L $H_2SO_4$ as stripping solution. The extraction and stripping efficiencies were found to be 96.7% and 91.0%, respectively. The copper composition of the stripped solution (pregnant electrolyte) was 50.0 g/L Cu with impurities of 25 ppm nickel, 5 ppm cobalt and 3 ppm iron. In the electro-winning process, copper metal of 99.833 purity was yielded with current efficiency of 98.9% and current density of $1.50A/dm^2$.

Performance Evaluation of Backwash Hydrodynamic Separator Filter for Treatment of Micro Particles (역세척 Hydrodynamic Separator Filter를 이용한 미세입자 제거 특성 분석)

  • Lee, Jun-Ho;Bang, Ki-Woong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.10
    • /
    • pp.694-701
    • /
    • 2012
  • The main purpose of this study is to evaluate of backwash system of hydrodynamic separator filter (HSF) with solar powered submerged pumps. It consists of a photovoltaic solar array, control electronics, battery, and two submersible pump powered by a 12 voltage DC motor. The laboratory scale study on treatable potential of micro particles using backwash HSF that was a combined with perlite filter cartridge and backwash nozzles. Since it was not easy to use actual storm water in the scaled-down hydraulic model investigations, it was necessary to reproduce ranges of particle sizes with synthetic materials. The synthesized storm runoff was made with water and addition of particles; ion exchange resin partices, silica gel particles, and commercial area manhole sediment particles. HSF was made of acryl resin with 250 mm of diameter filter chamber and overall height of 800 mm. Four case test were performed with different backwashing conditions and determined the SS removal efficiency with various surface loading rates. The operated range of surface loading rate was about 308~$1,250m^3/m^2/day$. It was found that SS removal efficiency of HSF using two submersible pumps improved by about 18% compared with HSF without backwash. Nonpoint control devices with solar water pumping systems would be useful for backwashing the filter in areas with not suppling electricity and reduce filter media exchange cost.

Degradation of Polyvinyl Alcohol in Dye-Processing Wastewater by Agar-Acrylamide Microbial Immobilization Method (한천-아크릴아마이드 미생물 고정화법에 의한 폐수 중 폴리비닐알콜의 분해)

  • 김재훈;김정목조무환
    • KSBB Journal
    • /
    • v.10 no.3
    • /
    • pp.241-248
    • /
    • 1995
  • For the treatment of poorly biodegradable polyvinyl alcohol(PVA) in dye-processing wastewater, immobilized microbial beads were prepared by uslng agar-acrylamide method. PVA removal efficiency for the synthetic wastewater was 85% at the PVA volume loading rate of $3.1g/\ell$.day. In case of real desizing wastewater, PVA removal efficiency was 81.3% at the PVA volume loading rate of $3.25g/\ell$.day. In observation of cross section of immobilized bead passed 5 months with diameter of 2.4mm, the growth of cell was limited by the resistance of substrate and oxygen transfer for the inners region of more than 48% of bead radius from the surface. It was estimated that 70% of total removed PVA was degraded by the immobilized cells in the continuous immobilized reactor. Substrate utilization rate in the suspended reactor was decreased with increasing dilution rates above 0.083 hr-1, but that in the immobilized reactor was increased with increasing dilution rates up to 0.125hr-1. The substrate removal efficiency of immobilized reactor was much superior to that of suspended reactor with increasing dilution rates. Saturation constant of substrate utilization rate equation, Ks was $6.6 g PVA/\ell$, and maximum specific substrate utilization. k was 0.175g PVA/g cell.hr

  • PDF

The Synthetic Study of Environmental Contamination at the Seokdae Municipal Waste Landfill in Pusan (부산 석대 생활폐기물 매립장의 환경오염에 대한 종합적 연구)

  • 김병우;정상용;이민희;이병헌
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2001.04a
    • /
    • pp.98-103
    • /
    • 2001
  • In order to understand the characteristics of leachate at the Seokdae municipal waste landfill in the Pusan city, the correlation between leachate pollution loading and volume of gas production. concentration of gas and subsidence of ground, the characteristical methos, geochemical analyses and laboratory column tests using samples of gases, leachate and surface soil of Seokdae waste landfill area. Through the analysis of water balance, leachate flow rate and pollution loading were estimated. Geistatistical analysis of four gas components ( $O_2$, C $H_4$, $H_2$S and CO) shows the possibility of ground subsidence around the group of a site with high concentration of gas. From geochemical analyses of leachate, EC and Total-Alkalinity of ground subsidence around the group of a site with high concentration of gas. From geochemical analysis of leachate, Ec and Total-Alkalinity were increased, and Cl, Cr, Mn, Cu, Zn, Cd and Pb were decreassed comparing to the part, and the type of water quality was Na-HC $O_3$ in trilinear diagram. It shows that biodecomposition of municipal wastes continues actively. From the analysis of water balance, the total leachate flow rate is about 465.11㎥/day and pure pollution loading of Cl, Mn and Fe are estimated to 223.8kg/day, 0.2kg/day, 0.3kg/day, respectively. The laboratory column test of residual soil and landfill soil shows 0.206cm and 0.019cm for linear velocity(equation omitted), 0.234 $\textrm{cm}^2$/min and 0.018$\textrm{cm}^2$/min for diffusion coefficient ( $D_{ι}$), and 1.136cm and 0.095cm longitudinal dispersion index ($\alpha$$_{ι}$), respective]y. It demonstrates that the delay time of contamination for residual soil is shorter than that of landfill soil.

  • PDF

PERFORMANCE OF TWO-PHASE UASB REACTOR IN ANAEROBIC TREATMENT OF WASTEWATER WITH SULFATE

  • Oh, Sae-Eun
    • Environmental Engineering Research
    • /
    • v.12 no.1
    • /
    • pp.8-15
    • /
    • 2007
  • Two phase UASB reactors for treating wastewater with sulfate were operated to assess the performance and competition of organics between sulfate reducing bacteria(SRB) and methane producing bacteria(MPB), and the change of characteristics of microorganisms. The reactors were fed in parallel with a synthetic wastewater of 4,000-5,000 mgCOD/L and sulfate concentration of $800-1,000\;mgSO_4/L$. In the MPR(methane producing reactor) and CR(control reactor), COD removal efficiencies were 90% and 60%, respectively, at the OLR(organic loading rate) of 6 gCOD/L, while the amount of biogas and methane content were 6.5 L/day and 80%, and 3 L/day and 50%, respectively. However, the portion of electron flow used by SRB at the OLR of 6 gCOD/L day in MPR and CR was 3% and 26%, respectively. This indicated that the increase of OLR of wastewater containing high sulfate like CR resulted in activity decrease and cell decay of MPB, while SRB was adapted immediately to new environment. The MPB activities in MPR and CR were 2 and $0.38\;kgCH_4-COD$/gVSS day at the OLR of 6 gCOD/L. This indicated hat SRB dominated gradually over MPB during long-term operation with wastewater containing sulfate as a consequence of outcompeting of SRB over MPB. In addition, the solution within AFR was maintained around pH 5.0, the MPB such as Methanothrix spp. which was very important to formation of granules was detached from the surface of granules due to the decrease of activity by limitation of substrate transportation into MPB. Therefore, a significant amount of sludge was washed out from the reactor.

Seismic response of current RC buildings in Kathmandu Valley

  • Chaulagain, Hemchandra;Rodrigues, Hugo;Spacone, Enrico;Varum, Humberto
    • Structural Engineering and Mechanics
    • /
    • v.53 no.4
    • /
    • pp.791-818
    • /
    • 2015
  • RC buildings constitute the prevailing type of construction in earthquake-prone region like Kathmandu Valley. Most of these building constructions were based on conventional methods. In this context, the present paper studied the seismic behaviour of existing RC buildings in Kathmandu Valley. For this, four representative building structures with different design and construction, namely a building: (a) representing the non-engineered construction (RC1 and RC2) and (b) engineered construction (RC3 and RC4) has been selected for analysis. The dynamic properties of the case study building models are analyzed and the corresponding interaction with seismic action is studied by means of non-linear analyses. The structural response measures such as capacity curve, inter-storey drift and the effect of geometric non-linearities are evaluated for the two orthogonal directions. The effect of plan and vertical irregularity on the performance of the structures was studied by comparing the results of two engineered buildings. This was achieved through non-linear dynamic analysis with a synthetic earthquake subjected to X, Y and $45^{\circ}$ loading directions. The nature of the capacity curve represents the strong impact of the P-delta effect, leading to a reduction of the global lateral stiffness and reducing the strength of the structure. The non-engineered structures experience inter-storey drift demands higher than the engineered building models. Moreover, these buildings have very low lateral resistant, lesser the stiffness and limited ductility. Finally, a seismic safety assessment is performed based on the proposed drift limits. Result indicates that most of the existing buildings in Nepal exhibit inadequate seismic performance.

무산소-호기공정을 이용한 순환식 생물여과반응기에서 동시 질산화 및 탈질화의 특성 연구

  • Lee, Su-Cheol;Kim, Dong-Jin
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.343-346
    • /
    • 2000
  • This study was carried out to investigate the effects of influent $NH_4^{\;+}-N$ load, C/N ratio and superficial air velocity on the nitrogen removal efficiencies. Laboratory scale upflow biological aerated filter(BAF) was consisted of an anoxic-aerobic filter packed with porous ceramic media and operated with synthetic wastewater. BAFs requires less energy and space for the system when compared to conventional activated sludge process. The influent C/N ratios were varied from 0 to 1 by adjusting acetate. Various superficial air velocity had been applied to investigate aeration effect on nitrogen removal. The BAF reactor showed more than 90% average $NH_4^{\;+}-N$ removal efficiencies at $NH_4^{\;+}-N$ loading in the range of $0.26{\sim}1.33$ kg $NH_4^{\;+}-N/m^3{\cdot}d$ and 62% average T-N removal efficiencies at the C/N ratio of 1. Moreover, average T-N removal efficiencies increased as the superficial air velocity increased, because of the increase $NH_4^{\;+}-N$ removal efficiencies.

  • PDF

Inference of Sequencing Batch Reactor Process using Oxidation Reduction Potential (ORP profile을 이용한 연속 회분식 반응기(Sequencing Batch Reactor)에서 무산소공정 추론)

  • Sim, Mun Yong;Bu, Gyeong Min;Im, Jeong Hun;U, Hye Jin;Kim, Chang Won
    • Journal of Environmental Science International
    • /
    • v.13 no.3
    • /
    • pp.245-250
    • /
    • 2004
  • The SBR(Sequencing Batch Reactor) process is ideally suited to treat high loading wastewater due to its high dilution rate. SBR operates by a cycle of periods consisting of filling, reacting, settling, decanting and idling. The react phases such as aeration or non-aeration, organic oxidation, nitrification, denitrification and other bio-logical reactions can be achieved in a reactor. Although the whole reactions can be achieved in a SBR with time distributing, it is hard to manage the SBR as a normal condition without recognizing a present state. The present state can be observed with nutrient sensors such as ${NH_{4}}^{+}-N$, ${NO_{2}}^{-}-N$, ${NO_{3}}^{-}-N} and ${PO_{4}}^{ 3-}-P.$ However, there is still a disadvantage to use the nutrient sensors because of their high expense and inconvenience to manage. Therefore, it is very useful to use common on-line sensors such as DO, ORP and pH, which are less expensive and more convient. Moreover, the present states and unexpected changes of SBR might be predicted by using of them. This study was conducted to get basic materials for making an inference of SBR process from ORP(oxidation reduction potential) of synthetic wastewater. The profiles of ORP, DO, and pH were under normal nitrification and denitrification were obtained to compare abnormal condition. And also, nitrite and nitrate accumulation were investigated during reaction of SBR. The bending point on ORP profile was not entirely in the low COD/NOx ratio condition. In this case, NOx was not entirely removed, and minimum ORP value was presented over -300mV. Under suitable COD/NOx ratio which complete denitrification was achieved, ORP bending point was observed and minimum ORP value was under -300m V. Under high COD/NOx ratio, ORP bending point was not detected at the first subcycle because of the fast denitrification and minimum ORP value was under -300mV at the time.

Study on Structural Analysis and Manufacturing of Polyethylene Canoes (폴리에틸렌 카누의 구조해석과 제조에 관한 연구)

  • Park, Chan-Kyun;Kim, Min-Gun;Cho, Seok-Swoo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.35 no.3
    • /
    • pp.309-316
    • /
    • 2011
  • Canoes are usually made from wood or FRP. However, today environment-friendly materials are preferred, and hulls made of FRP are prohibited in some countries. Polyethylene can be recycled and so is suitable for synthetic canoe construction. We used 3D Boat-Design to determine the hydrostatic properties of the canoe. Flow-structure coupled analysis was performed using ANSYS Workbench R12.1. The hull pressure and passenger weight were considered as canoe loading factors. The key parameters for the canoe are the design variables. The constraints are as follows: (1) The maximum stress must not exceed 50% of the polyethylene yield stress; and (2) the canoe weight must not exceed 50 kg. The optimal structural conditions were obtained by the response optimization process. The components of the canoe hull were manufactured from polyethylene pipes and joined by thermal fusion methods. Tests showed that the polyethylene canoe had better performance than existing canoes.

Enhanced Local Anesthetic Efficacy of Bioadhesive Ropivacaine Gels

  • Cho, Cheong-Weon;Choi, Jun-Shik;Shin, Sang-Chul
    • Biomolecules & Therapeutics
    • /
    • v.19 no.3
    • /
    • pp.357-363
    • /
    • 2011
  • In relieving local pains, ropivacaine has been widely used. In case of their application such as ointments and creams, it is difficult to expect their effects for a significant period of time, because they are easily removed by wetting, movement and contacting. Therefore, the new formulations that have suitable bioadhesion were needed to enhance local anesthetic effects. The effect of drug concentration and temperature on drug release was studied from the prepared 1.5% Carboxymethyl cellulose (CMC) (150MC) gels using synthetic cellulose membrane at $37{\pm}0.5^{\circ}C$. As the drug concentration and temperature increased, the drug release increased. A linear relationship was observed between the logarithm of the permeability coefficient and the reciprocal temperature. The activation energy of drug permeation was 3.16 kcal/mol for a 1.5% loading dose. To increase the skin permeation of ropivacaine from CMC gel, enhancers such as saturated and unsaturated fatty acids, pyrrolidones, propylene glycol derivatives, glycerides, and non-ionic surfactants were incorporated into the ropivacaine-CMC gels. Among the enhancers used, polyoxyethylene 2-oleyl ether showed the highest enhancing effects. For the efficacy study, the anesthetic action of the formulated ropivacaine gel containing an enhancer and vasoconstrictor was evaluated with the tail-flick analgesimeter. According to the rat tail-flick test, 1.5% drug gels containing polyoxyethylene 2-oleyl ether and tetrahydrozoline showed the best prolonged local analgesic effects. In conclusion, the enhanced local anesthetic gels containing penetration enhancer and vasoconstrictor could be developed using the bioadhesive polymer.