• Title/Summary/Keyword: Synthetic jet

Search Result 60, Processing Time 0.023 seconds

Development of Stereoscopic PTV Technique and Performance Tests (Stereoscopic PTV 기법의 개발과 성능비교 연구)

  • Lee Sang-Joon;Yoon Jong-Hwan
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.30 no.3 s.246
    • /
    • pp.215-221
    • /
    • 2006
  • A stereoscopic particle tracking velocimetry (SPTV) technique based on the 2-frame hybrid particle tracking velocimetry (PTV) method was developed. The expansion of 2D PTV to SPTV is facilitated by the fact that the PTV method tracks individual particle centroids. To evaluate the performance and measurement accuracy of the present SPTV technique, it was applied to flow images of rigid body translation and synthetic standard images of jet shear flow and impinging jet flow. The data processing routine and measurement uncertainty of the SPTV technique are compared with those of conventional stereoscopic particle image velecimet.y (SPBV). In addition, the centroid translation effect of 2D particle image velocimetry (PIV) is defined and its effect on SPIV measurements is discussed. Compared to the SPIV method, the SPTV technique has inherited merits of concise and precise velocity evaluation procedures and provides better spatial resolution and measurement accuracy.

저온 대기압 아크젯의 플라즈마 발생부 물질에 따른 플라즈마 온도 변화 연구

  • Jeong, Hui-Su;Choe, Won-Ho
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.339-339
    • /
    • 2011
  • 진공 플라즈마와 달리 개방된 공간에서 방전되는 대기압 플라즈마는 진공상태에서 수행되는 에칭, 증착 등의 복잡한 플라즈마 공정을 경제적이고 신속하게 수행할 수 있어, 최근 들어 연구가 활발히 진행 중이다. 이와 관련하여 He, Ar, $N_2$, $O_2$, Air 등의 여러 종류의 기체를 50 kHz 고전압에서 방전하여 대기 중에서 저온 플라즈마 공정이 가능한 아크젯 타입의 플라즈마 소스를 개발하였다. 개발된 플라즈마 소스에서는 입력전압, 기체유량, 노즐의 구조와 크기 등의 여러 운전변수에 따라 플라즈마의 방전특성이 변화되었다. 특히 본 연구에서는 아크젯의 플라즈마 발생부의 물질성분(SUS, Aluminum, Cupper)에 따른 플라즈마의 기체온도 및 전자여기 온도의 변화를 광방출분광법(OES)를 이용한 Synthetic spectrum method와 Boltzmann plot method을 통해 살펴보았다. 전압-전류 특성곡선, 시간분해 이미지 촬영법, 기체온도 측정법 등을 이용하여 발생된 플라즈마의 물리적인 특성을 분석하였다. 특히 물질의 성분에 따라 발생되는 플라즈마의 기체 및 전자여기 온도가 이차 전자 방출계수 및 물질의 전도도와의 상관관계가 있는지 연구가 진행 중이다.

  • PDF

Ultrafine ITO Nanoparticle for Ink Jet Printing

  • Hong, Sung-Jei;Kim, Yong-Hoon;Han, Jeong-In
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.467-470
    • /
    • 2007
  • Ultrafine Indium tin oxide (ITO) nanoparticle was successfully fabricated by low temperature synthetic method (LTSM). Mean size of ITO nanoparticle is 5 nm, and uniformly dispersed with (222) orientated cubic structure. Using the nanoparticle, ITO thin film with good optical and electrical properties was fabricated by inkjet printing.

  • PDF

Biological Treatment of Ethylene Glycol in Polyester Weight-Loss Wastewater Using Jet-Loop Reactor (Jet-Loop Reactor를 이용한 Polyester 감량폐수중 Ethylene Glycol의 생물학적 처리)

  • 류원률;최장승;조무환
    • KSBB Journal
    • /
    • v.14 no.1
    • /
    • pp.119-123
    • /
    • 1999
  • A jet-loop reactor was used for the biological treatment of ethylene glycol(EG) which is a main component of polyester weight-loss wastewater, and is difficult to be removed by physicochemical treatments. Volumetric oxygen coefficient(kLa) of jet-loop reactor was significantly larfgeer that of air-lift reactor. When organic loading rates of synthetic polyester weight-loss wastewater were 2.64 $kgOD_{Mn}/m^3$.day and 3.07 $kgCOD_{Cr}/m^3$.day, the effluent concentrations were measured as 154 $mgCOD_{Mn}/L$ and 156$mgCOD_{Cr}/L$, and removal efficiencies were found as 93%and 93.6%, respectively. The specific removal rate was proportionally increased from 0.25 to 1.60 $kgCOD_{Mn}$-removed/kgMLVSS.day as specific loading rate was increased from 0.25 to 1.72 $kgCOD_{Mn}$/kgMLVSS.day. Also, kinetics constants such as $K_s$, k, $K_d$, and Y were estimated as 89 mg/L, $0.05 hr^{-1}$, 0.1$day^{-1}$ and 0.78 respectively. When the organic loading rates of real polyester weight-loss wastewater were 2.64 $kgOD_{Mn}/m^3$. and 5.24 $kgCOD_{Cr}/m^3$. day, the effluent concentrations were measured as 150 $mgCOD_{Mn}$/L, and 306 $mgCOD_{Cr}$/L, and removal efficiencies were found as 93.2% and 93%, respectively. This study demonstrated that EG in the wastewater could be efficiently removed biologically using a jet-loop reactor.

  • PDF

Target Classification for Multi-Function Radar Using Kinematics Features (운동학적 특징을 이용한 다기능 레이다 표적 분류)

  • Song, Junho;Yang, Eunjung
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.26 no.4
    • /
    • pp.404-413
    • /
    • 2015
  • The target classification for ballistic target(BT) is one of the most critical issues of ballistic defence mode(BDM) in multi-function radar(MFR). Radar responds to the target according to the result of classifying BT and air breathing target(ABT) on BDM. Since the efficiency and accuracy of the classification is closely related to the capacity of the response to the ballistic missile offense, effective and accurate classification scheme is necessary. Generally, JEM(Jet Engine Modulation), HRR(High Range Resolution) and ISAR(Inverse Synthetic Array Radar) image are used for a target classification, which require specific radar waveform, data base and algorithms. In this paper, the classification method that is applicable to a MFR system in a real environment without specific waveform is proposed. The proposed classifier adopts kinematic data as a feature vector to save radar resources at the radar time and hardware point of view and is implemented by fuzzy logic of which simple implementation makes it possible to apply to the real environment. The performance of the proposed method is verified through measured data of the aircraft and simulated data of the ballistic missile.

3D LIDAR Based Vehicle Localization Using Synthetic Reflectivity Map for Road and Wall in Tunnel

  • Im, Jun-Hyuck;Im, Sung-Hyuck;Song, Jong-Hwa;Jee, Gyu-In
    • Journal of Positioning, Navigation, and Timing
    • /
    • v.6 no.4
    • /
    • pp.159-166
    • /
    • 2017
  • The position of autonomous driving vehicle is basically acquired through the global positioning system (GPS). However, GPS signals cannot be received in tunnels. Due to this limitation, localization of autonomous driving vehicles can be made through sensors mounted on them. In particular, a 3D Light Detection and Ranging (LIDAR) system is used for longitudinal position error correction. Few feature points and structures that can be used for localization of vehicles are available in tunnels. Since lanes in the road are normally marked by solid line, it cannot be used to recognize a longitudinal position. In addition, only a small number of structures that are separated from the tunnel walls such as sign boards or jet fans are available. Thus, it is necessary to extract usable information from tunnels to recognize a longitudinal position. In this paper, fire hydrants and evacuation guide lights attached at both sides of tunnel walls were used to recognize a longitudinal position. These structures have highly distinctive reflectivity from the surrounding walls, which can be distinguished using LIDAR reflectivity data. Furthermore, reflectivity information of tunnel walls was fused with the road surface reflectivity map to generate a synthetic reflectivity map. When the synthetic reflectivity map was used, localization of vehicles was able through correlation matching with the local maps generated from the current LIDAR data. The experiments were conducted at an expressway including Maseong Tunnel (approximately 1.5 km long). The experiment results showed that the root mean square (RMS) position errors in lateral and longitudinal directions were 0.19 m and 0.35 m, respectively, exhibiting precise localization accuracy.

NUMERICAL SIMULATIONS OF HH 211: A REFLECTION-SYMMETRIC BIPOLAR OUTFLOW

  • MORAGHAN, ANTHONY;LEE, CHIN-FEI;HUANG, PO-SHENG;VAIDYA, BHARGAV
    • Publications of The Korean Astronomical Society
    • /
    • v.30 no.2
    • /
    • pp.113-114
    • /
    • 2015
  • Recent high-resolution, high-sensitivity observations of protostellar jets have shown many to possess an underlying 'wiggle' structure. HH 211 is one such example where recent sub-mm observations revealed a clear reflection-symmetric wiggle. An explanation for this is that the HH211 jet source is moving as part of a protobinary system. Here we test this assumption by simulating HH211 through 3D hydrodynamic simulations using the pluto code with a molecular chemistry and cooling module, and initial conditions based on an analytical model derived from SMA observations. Molecular chemistry allows us to accurately plot synthetic molecular emission maps and position-velocity diagrams for direct comparison to observations, enabling us to test the observational assumptions and put constraints on the physical parameters of HH211. Our preliminary results show that the reflection-symmetric wiggle can be recreated through the assumption of a jet source being part of a binary system.

Influence of Electrode Position on Performance of Sparkjet Actuator Using Numerical Analysis (수치해석을 이용한 전극 위치에 따른 스파크제트 액츄에이터의 성능 연구)

  • Shin, Jin Young;Kim, Hyung-Jin;Kim, Kyu Hong
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.47 no.11
    • /
    • pp.753-760
    • /
    • 2019
  • Sparkjet actuator, also known as plasma synthetic jet actuator, which is a kind of active flow control actuator is considered as being high possibility for the supersonic flow control due to ejecting stronger jet compared to the other active flow control actuators. Sparkjet actuator generates high temperature and high pressure flow inside the cavity by using arc plasma and leads momentum by ejecting such flow through orifice or nozzle. In this research, numerical calculation of sparkjet actuator with respect to the location of electrodes which exists inside the cavity is conducted and the change of the performance of sparkjet actuator is suggested. As the location of electrodes goes closer to the bottom of the cavity, impulse is increased and the average pressure inside the cavity maintains higher. When the location of electrode is 25% and 75% of the entire cavity height, impulse is 2.515 μN·s and 2.057 μN·s, respectively. Each impulse is changed by about 9.92% and -10.09% compared to when the location of electrodes is 50% of the entire cavity height.

Characteristics of Ammonia Removal from a Synthetic Wastewater in a Jet Loop Reactor with a Two-fluid Venturi-type Swirl Nozzle (이유체 벤츄리형 선회 노즐이 장착된 제트 루프 반응기에서 합성폐수 중의 암모니아 제거특성)

  • Noh, Da-ji;Yun, Chan-Su;Lim, Jun-Heok;Won, Yong-Sun;Lee, Tae-Yoon;Lee, Jea-Keun
    • Clean Technology
    • /
    • v.23 no.2
    • /
    • pp.205-212
    • /
    • 2017
  • We investigated the performance of a jet loop reactor (JLR) with the two-fluid venturi-type swirl nozzle (TVSN) during experiment for ammonia removal by air stripping from a synthetic wastewater, and compared it with that of a JLR with the two-fluid venturi-type conventional nozzle (TVCN), with the variation of pH, liquid circulation rate ($Q_L$), and air flow rate ($Q_G$). Their performance levels were compared based on the ammonia removal efficiency and overall mass transfer coefficient ($K_La$). Investigated parameters in a JLR were pH (10-12), air flow rate ($Q_G=5-20L\;min^{-1}$), and liquid circulation rate ($Q_L=25-35L\;min^{-1}$). Throughout the experiment, the ammonia removal efficiency and $K_La$ in a JLR with TVSN was higher than in a JLR with TVCN. This may be due to the enhanced turbulent intensity by swirling flow formed in the JLR with TVSN compared to that with TVCN. Further, we obtained higher $K_La$ when pH, $Q_L$ and $Q_G$ were increased. In particular, $K_La$ was increased more efficiently by increasing $Q_G$ than by increasing pH and $Q_L$.

Operation Limit of Flow Control for a Bistable Fluidic Valve

  • Lee, Ji Ung;Hong, Ji-Seok;Sung, Hong-Gye
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.389-394
    • /
    • 2017
  • The limitation of flow control for a bistable fluidic valve has been investigated. The physical model of the fluidic valve includes two main flow outlets and two control flow inlets. The experiments were conducted with pressure regulators, mass flow meters, and piezo sensors to analyze flow switching characteristics of the fluidic valve. The experimental data such as pressure and mass flow rate of control flows and the switching time of the main flow was obtained with various operating conditions. The operation limit of the fluidic valve is identified, and a model equation for pre-estimating the minimum control pressure to switch the direction of the main flow has been proposed.