• Title/Summary/Keyword: Synthetic imaging

Search Result 234, Processing Time 0.021 seconds

Evolution of the synthetic aperture imaging method in medical ultrasound system (초음파진단기 합성구경영상법의 진화)

  • Bae, MooHo
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.534-544
    • /
    • 2022
  • Medical ultrasound system has been widely used to visualize the lesion for diagnostics in most medical service site including hospitals and clinics thanks to its advantages such as real time operation, ease of use, safety. Among many signal processing blocks of the system, one of the most important part that governs the image quality is the beamformer, and technologies for this part has been continuously developed in long time. The synthetic aperture imaging method, that is one of the major technologies of beamforming, was introduced to maximize utilizing the information delivered from the patient's body through the probe, and contributed to breakthrough of the image quality since it was introduced in around 1990's, and evolved continuously in decades. This paper reviews and surveys the process of development of this technology and expects future evolution.

Analysis method of signal model for synthetic aperture integral imaging (합성 촬영 집적 영상의 신호 모델 해석 방법)

  • Yoo, Hoon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.14 no.11
    • /
    • pp.2563-2568
    • /
    • 2010
  • SAII (synthetic aperture integral imaging) is a useful technique to record many multi view images of 3D objects by using a moving camera and to reconstruct 3D depth images from the recorded multiviews. This is largely composed of two processes. A pickup process provides elemental images of 3D objects and a reconstruction process generates 3D depth images computationally. In this paper, a signal model for SAII is presented. We defined the granular noise and analyzed its characteristics. Our signal model revealed that we could reduce the noise in the reconstructed images and increase the computational speed by reducing the shifting distance of a single camera.

The estimation of first order derivative phase error using iterative algorithm in SAR imaging system (SAR(Synthetic Aperture Radar)Imaging 시스템에서 제안 알고리즘의 반복수행을 통한 위상오차의 기울기 추정기법 연구)

  • 김형주;최정희
    • Proceedings of the IEEK Conference
    • /
    • 2000.11a
    • /
    • pp.505-508
    • /
    • 2000
  • The success of target reconstruction in SAR(Synthetic Aperture Radar) imaging system is greatly dependent on the coherent detection. Primary causes of incoherent detection are uncompensated target or sensor motion, random turbulence in propagation media, wrong path in radar platform, and etc. And these appear as multiplicative phase error to the echoed signal, which consequently, causes fatal degradations such as fading or dislocation of target image. In this paper, we present iterative phase error estimation scheme which uses echoed data in all temporal frequencies. We started with analyzing wave equation for one point target and extend to overall echoed data from the target scene - The two wave equations governing the SAR signal at two temporal frequencies of the radar signal are combined to derive a method to reconstruct the complex phase error function. Eventually, this operation attains phase error correction algorithm from the total received SAR signal. We verify the success of the proposed algorithm by applying it to the simulated spotlight-mode SAR data.

  • PDF

Verification of Wavefront Inversion Scheme via Signal Subspace Comparison Between Physical and Synthesized Array Data in SAT Imaging (SAR Imaging에서 Physical Array와 합성 Array 신호의 Subspace 비교를 통한 Wavefront Inversion 기법 입증)

  • 최정희
    • Journal of the Korean Institute of Telematics and Electronics D
    • /
    • v.36D no.4
    • /
    • pp.34-41
    • /
    • 1999
  • Unlike the traditional radar system, Synthetic Aperture Radar(SAR) system is capable of imaging a target scene to ceertain degree of cross-range resolution. And this resolution is mainly depends on the size of aperture synthesized. Thus, a good system model and inversion scheme should be developed to actually give effect of synthesizing aperture size, which in turn gives better cross range resolution of reconstructed target scene. Among several inversion schemes for SAR imaging, we used an inversion scheme called wavefront reconstruction which has no approximation in wave propagation analysis, and tried to verify whether the collected data with synthesized aperture actually give the same support as that with physical aperture in the same size. To do this, we performed a signal subspace comparison of two imaging models with physical and synthesized arrays, respectively. Theoretical comparisons and numerical analysis using Gram-Schmidt procedures have been performed. The results showed that the synthesized array data fully span the physical array data with the same system geometry. This result strongly supports the previously proposed inversion scheme valuable in high resolution radar imaging.

  • PDF

Forward-Looking Synthetic Inverse Scattering Image Formation for a Vehicle with Curved Motion Based on Time Domain Correlation (시간 영역 상관관계 기법을 통한 곡선운동을 하는 차량용 전방 관측 역산란 합성 영상 형성)

  • Lee, Hyukjung;Chun, Joohwan;Hwang, Sunghyun;You, Sungjin;Byun, Woojin
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.30 no.1
    • /
    • pp.60-69
    • /
    • 2019
  • In this paper, we deal with forward-looking imaging, and focus on forward-looking synthetic inverse scattering imaging for a vehicle with curved motion. For image formation, time domain correlation(TDC) is used and a 2D image of the ground in front of the vehicle is generated. Because TDC is a technique that implements matched filtering for a space-variant system, it is robust to Gaussian additive noise of measurements. Furthermore, comparison and analysis between images from linear motion and curved motion show that the resolution of the image is improved; however, the entropy of the image is increased owing to curved motion.

Recent Progress in MRI Contrast Agent with Ceramic LDH Nanohybrids (세라믹 LDH 나노하이브리드를 이용한 MRI 조영제의 최신 연구동향)

  • Ha, Seongjin;Jin, Wenji;Park, Dae-Hwan
    • Ceramist
    • /
    • v.22 no.3
    • /
    • pp.269-280
    • /
    • 2019
  • Ceramic layered double hydroxide (LDH) nanohybrids have attracted considerable interest in biomedical science due to their unique structural feature and characteristics in biological condition. Many studies on LDH nanoparticles have been reported in diagnosis applications including magnetic resonance imaging (MRI) contrast agents in order to not only provide better imaging performance through multimodal imaging strategy, but realize therapeutic function which treat cancers in one platform. This review highlights the recent progress in MRI T1 contrast agent, dual modal imaging system, and MRI-guided drug delivery systems ranging from synthetic method and characterization to evaluation in vitro and in vivo based on the ceramic LDH nanohybrids. Future research directions are also suggested for next-generation bio-imaging contrast agent.

Synthesis of a squaric acid-derived molecular probe for near-infrared fluorescence and photoacoustic imaging

  • Jung Eun Park;Yong Dae Park;Jongho Jeon
    • Journal of Radiopharmaceuticals and Molecular Probes
    • /
    • v.6 no.2
    • /
    • pp.177-181
    • /
    • 2020
  • Dual-modality imaging strategy using near-infrared fluorescence (FLI) and photoacoustic imaging (PAI) demands a suitable probe to enable dual-modular signal production. Herein, we demonstrate a synthetic protocol of small molecular dye for dual-modular FLI and PAI. A condensation reaction between squaric acid and carboxypentyl benzoindolium, and followed by basic hydrolysis to give the benzoindole derived squaraine (BSQ) dye in 49% yield. Next, the carboxylic acid group of BSQ was further functionalized with N-hydroxysuccinimide or azide group for an efficient conjugation with a targeting biomolecule. BSQ showed a maximum fluorescent emission at around 680 nm and the photoacoustic signal reached a maximum intensity at 680-700 nm. Based on these results, we conclude that BSQ analogs will be useful probes for dual-modular (FLI/PAI) imaging studies in animal models.

Real-Time 3D Ultrasound Imaging Method Using a Cross Array Based on Synthetic Aperture Focusing: II. Linear Wave Front Transmission Approach (합성구경 기반의 교차어레이를 이용한 실시간 3차원 초음파 영상화 기법 : II. 선형파면 송신 방법)

  • 김강식;송태경
    • Journal of Biomedical Engineering Research
    • /
    • v.25 no.5
    • /
    • pp.403-414
    • /
    • 2004
  • In the accompanying paper, we proposed a real. time volumetric imaging method using a cross array based on receive dynamic focusing and synthetic aperture focusing along lateral and elevational directions, respetively. But synthetic aperture methods using spherical waves are subject to beam spreading with increasing depth due to the wave diffraction phenomenon. Moreover, since the proposed method uses only one element for each transmission, it has a limited transmit power. To overcome these limitations, we propose a new real. time volumetric imaging method using cross arrays based on synthetic aperture technique with linear wave fronts. In the proposed method, linear wave fronts having different angles on the horizontal plane is transmitted successively from all transmit array elements. On receive, by employing the conventional dynamic focusing and synthetic aperture methods along lateral and elevational directions, respectively, ultrasound waves can be focused effectively at all imaging points. Mathematical analysis and computer simulation results show that the proposed method can provide uniform elevational resolution over a large depth of field. Especially, since the new method can construct a volume image with a limited number of transmit receive events using a full transmit aperture, it is suitable for real-time 3D imaging with high transmit power and volume rate.

ISAR Imaging of Airplane-like Targets by Matrix Pencil Method (Matrix Pencil 방법에 의한 비행기 모형의 ISAR 영상화)

  • 유지희;권경일;이용희
    • The Journal of Korean Institute of Electromagnetic Engineering and Science
    • /
    • v.12 no.2
    • /
    • pp.299-307
    • /
    • 2001
  • This paper presents a experimental study of Inverse Synthetic Aperture Radar(ISAR) imaging using Matrix Pencil(MP) method. A series of measurement for two types of target model was done in a Compact Range(CR)facility. The first target is a set of distributed slim cylinders to get a ISAR image of point-like scatterers. The second is UAV model representing a complex real target. The results show that ISAR images by MP method are better than by conventional FFT method under the realistic measurement conditions.

  • PDF